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Abstract

We investigate crossed products of Cuntz algebras by quasi-free actions of abelian groups. We prove
that our algebras are AF-embeddable when actions satisfy a certain condition. We also give a necessary and
sufficient condition that our algebras become simple and purely infinite, and consequently our algebras are
either purely infinite or AF-embeddable when they are simple.

1 Introduction

There had been no examples of simple C*-algebras which have both a finite projection and an infinite
one until M. Rgrdam found such a C*-algebra recently [R]. However, we have found no examples of such
simple C*-algebras among nuclear ones, so far. Moreover we have not known examples of simple nuclear
C*-algebras which are not stably finite nor purely infinite. The property ‘stable finiteness’ has recently
attracted much attention in connection with quasidiagonality and AF-embeddability. It is easy to see that
AF-embeddability implies quasidiagonality and that quasidiagonality implies stable finiteness. It is still
open whether or not stable finiteness implies AF-embeddability for nuclear C*-algebras. On this topic,
there is a nice survey [B3] written by N. P. Brown. Since M. Pimsner and D. Voiculescu showed that
the irrational rotation algebras are AF-embeddable [PV], several authors have studied AF-embeddability
of some classes of C*-algebras. In particular, we can find many papers dealing with AF-embeddability
of crossed products of finite C*-algebras, for example, [Pu], [Pil], [Pi2] for those of commutative C*-
algebras, and [V], [B1], [B2] for those of AF-algebras. On the other hand, the author has been unable to
find any article related to AF-embeddability of crossed products of infinite C*-algebras. We remark that
it seems more difficult to show AF-embeddability of crossed products of infinite C*-algebras by continuous
groups than those of finite C*-algebras. For crossed products of finite C*-algebras, there is a method to
derive AF-embeddability of crossed products by continuous groups from the discrete group case by using
Green’s imprimitivity theorem ([G], see also [B2]). However, for infinite C*-algebras, we cannot use this
method because their crossed products by discrete groups are never embedded into AF-algebras.

In this paper, we will deal with crossed products of Cuntz algebras by quasi-free actions of abelian
groups, whose ideal structures were examined in our previous paper [Ka]. We will prove the AF-
embeddability of our algebras under a certain condition for actions. To the author’s knowledge, this
is the first case to have succeeded in embedding crossed products of purely infinite C*-algebras into
AF-algebras except trivial cases. We will also show that our algebras are either purely infinite or AF-
embeddable when they are simple.

This paper is organized as follows. After some preliminaries, we will show that the crossed products
are AF-embeddable when actions satisfy a certain condition (Theorem 3.8). They were known to be
stably finite in the case that the group is the real number group R [KK1]. In the case that the group is
compact, this condition is also sufficient for the crossed products to be AF-embeddable, and moreover
the crossed products become AF-algebras under this condition. For the general setting, we do not know
whether our algebra is AF-embeddable or not when the action does not satisfy the condition (see Remark
3.10). In section 4, we will give a necessary and sufficient condition that our algebras become simple



and purely infinite. Combining this characterization with our result on AF-embeddability, we can easily
get the dichotomy which says that our algebras are either purely infinite or AF-embeddable when they
are simple. In the last section, we will deal with crossed products of the Cuntz algebra O, which is
generated by infinitely many isometries, by the same type of actions of abelian groups. We will prove AF-
embeddability of such algebras under a certain condition for actions, and give a necessary and sufficient
condition for such algebras to be simple and purely infinite which will be shown to be equivalent to the
property that they are simple.
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2 Preliminaries

In this section, we review some results and fix the notation. For n = 2,3,..., the Cuntz algebra O,
is the universal C*-algebra generated by n isometries Si,Ss,...,S,, satisfying Y ., S;SF = 1. For

ke N={0,1,...}, we define the set W of k-tuples by w® = {0} and
W,(lk) = {(il,iQ,... ,ik-) ‘ ij S {1,2,... ,n}}

We set Wy, = Urep ka). For p = (i1,142,...,ix) € Wy, we denote its length k£ by |p|, and set S, =
31‘151'2 Slk S On Note that |®| = O, SQ) = 1. For on = (il,ig,... ,ik),V = (jl,jg,... ,jl) S Wn, we
define their product puv € W,, by pv = (41,42, -+ 58k, J1, 725« -« 5 J1)-

We fix a locally compact abelian group G whose dual group is denoted by I'" which is also a locally
compact abelian group. We always use + for multiplicative operations of abelian groups except for T,
which is the group of the unit circle in the complex plane C. The pairing of t € G and ~ € T" is denoted
by (t|v)€T.

Definition 2.1 Let w = (w1,ws, ... ,w,) € I'™ be given. We define the action o : G ~ O,, by
af(Si):<t|wi)Si (i:1,2,...7n,t€G).

This type of action is called quasi-free (see [E] for quasi-free actions on the Cuntz algebras). Since
the abelian group G is amenable, the reduced crossed product of the action a® : G ~ O, coincides
with the full crossed product of it. We will denote it by O, x4~G and call it the crossed product. The
crossed product Oy, X4« G has a C*-subalgebra C1x .~ G, which is isomorphic to Co(T"). Throughout this
paper, we always consider Cy(I") as a C*-subalgebra of O,, X« G, and use f, g, ... for denoting elements of
Co(T') C O, %o« G. The Cuntz algebra O,, is naturally embedded into the multiplier algebra M (O,, X o« G)
of O, XqwG. For each p = (i1,42,... ,4) in W, we define an element w, of T by w, = Z]?:1 wj;. For
vo € T', we define a (reverse) shift automorphism ., : Co(I') — Co(T') by (o4, f)(v) = f(v + 1) for
J € Co(T"). Once noting that o (S,,) = (t|w, )5S, for p € Wy, one can easily verify that fS, = S,0.,, f
for any f € Co(I') C OpxawG and any p € W,,. The linear span of {S,fS} | u,v € W,, f € Co(I')} is
dense in O, x40 G (see [Ka]). We denote by M, the C*-algebra of k x k matrices for k = 1,2,..., and
by K the C*-algebra of compact operators of the infinite dimensional separable Hilbert space.

3 AF-embeddability of O, x.,.G

A. Kishimoto and A. Kumjian showed that O,, x4« R is stably projectionless if all the w;’s have the same
sign by using the KMS-state [KK1, Theorem 4.1]. Thus O, xR is stably finite in this case. In this



section, we will show that O, X4~ G becomes AF-embeddable if w satisfies a certain condition. This gives
another proof of the stable finiteness of O, x,~R when all the w;’s have the same sign. More precisely,
we will prove that if —w; ¢ {w, | p € W, } for any i € {1,2,...,n}, then O, Xo.G is AF-embeddable
(Theorem 3.8). Here we note that {w, | £ € W,} is the closed semigroup generated by w1, ws, ... ,wy.

Let us take a faithful representation O,, — B(H) for some Hilbert space H. There exists a canonical
embedding O, X oG — B(H® L?*(G)). Since L?(G) is isomorphic to L?(T') via the Fourier transform, we
can consider O, X4+ G as a subalgebra of B(H ® L?(T)). In this setting, an element of Cy(T") C OpX 0w G
acts by multiplication on L?(I") and as identity on H. Note that the weak closure of Co(T') in B(H®L?(T))
is L>°(T).

Throughout this section, we fix w € I'™ satisfying —w; ¢ {w, | p € W, } for any i. We also fix an
open base {U;}iey of T such that for any i € I, U; is compact and for any i € T and p € W, there exists
j € I with U; = U; — wy,. Obviously such an open base exists, and we can take countable one when I
satisfies the second countability axiom. For each ¢ € I, let us consider the characteristic function xy, of
U; which is an element of L>°(T') C B(H @ L*(T")). Let Do(T) be the C*-algebra generated by {xu; }iel-
Let us denote by A the directed set of all finite subsets of I whose order is defined by the inclusion.
For A\ = {i1,ia,... ,ix} € A, the C*-subalgebra Dy of Dy(T') is defined by the C*-algebra generated by
XUiy s XUsys - - - 5 XUy, - Omne can easily verify the following.

Lemma 3.1 (i) Co(I") C Do(T).

(i) We can define the shift x-homomorphism o, : Do(T') — Do(T') for any p € W,
(iii) lim Dy = Do(T).

(iv) Do(T") is an AF-algebra.

Define a subspace A of B(H @ L*(T)) by
A =5pan{S,fS; | u,v € Wy, f € Dy(T)}.

By Lemma 3.1 (ii), A is a C*-algebra and by Lemma 3.1 (i), A contains O, x4~G. We will show that
A is an AF-algebra when —w; ¢ {w, | 1t € W, } for any i € {1,2,... ,n}, which implies that O, X« G is
AF-embeddable. We denote by Ay the C*-algebra generated by {S,xv, S5 | 1, v € W, i € A}. It is easy
to see the following.

Lemma 3.2 With the above notation, we have A = h_H)lA)\.

By Lemma 3.2, to prove that A is an AF-algebra, it suffices to show that A, is an AF-algebra for
any A € A. Let us take A € A arbitrarily, and fix it. Let p1,p2,... ,pr be minimal projections of Dy
and p = Zlepl be its unit. Note that Ay is generated by {S.piS; | p,v € Wy, I =1,2,... ,L}.
Only in the next lemma, we use directly the assumption that w satisfies —w; ¢ {w, | p € W, } for any
i €{1,2,...,n}, and this lemma implies all the following lemmas and the fact that Ay is an AF-algebra.

Lemma 3.3 There exists K € N such that pS,p =0 for any p € W, with |u| > K.

Proof. If we define a subset U = |J; ¢
is compact since U; is compact for any i € X. To derive a contradiction, assume that for any k € N, there
exists p € W, such that |ux| > k and pS,, p # 0. Then we have S}, pS,,p # 0. Since S}, pS,, is the
characteristic function of U —wy,,, , there exists v, € (U —w,,, )NU. We have w,,, = (Ye+wp,)—v € U-U
for any k£ € N. Since U — U is compact, there exists an increasing subsequence ki, ks2,... ,km,... of N
such that w,, ~—converges to some element 79 € U — U when m goes to infinity. By replacing it by a
subsequence of {k,,} if necessary, we may assume that the number of ¢ appearing in g, € W, does not
decrease for i = 1,2,... ,n. Since |ug,, | — oo when m — oo, there exists ig € {1,2,... ,n} such that the
number of iy appearing in p, . diverges to infinity when m — oo. By replacing it by a subsequence of

U; of I, then p is the characteristic function of U. The closure of U

m



{km} if necessary, we may assume that the number of iy appearing in ug, increases strictly. Thus, we
have wy, =~ —wy, | —wiy € {wy | p € Wy} for any m € N. By

im (W, = Wi, — Wio) =70 — 70 — Wi = ~Wig)
we have —w;, € {w, | © € W, }. This is a contradiction. 1

We fix a positive integer K satisfying the condition in Lemma 3.3. Before going further, we remark
that S, fS); and S,gS; commute for any u,v € W, and any f,g € Do(I'). This fact will be used
without further notice. For k € N, define a *x-endomorphism py, of Ay by pr(z) = > SuxS). Set a
projection ¢ in Ay by

pew®

q= (ﬁ (1- pk(p))) P

k=1
Note that g <p and ¢ <1 — pg(p) for k=1,2,... | K.

Lemma 3.4 For any p,v € Wy, with p # v, two projections S,qS;, and S,qS;, are orthogonal to each
other.

Proof. Tt suffices to show that ¢S,q = 0 for any p € W,, with p # (). When 1 < |u| < K, since
(1= pu () Spp = (S) — Sup)p =0,

we have ¢S, = 0. When |u| > K, pS,p = 0 by Lemma 3.3, so ¢S,q = 0. |
Denote a set {u € W, | || < K} by W.

Lemma 3.5 We have Zuew SuaSip =p.

Proof. For 1 =1,2,...,K, we have

K
pi(q) = (H (1- pz+k(p))> p1(p)-
k=1

Since (1 — pi(p)) p = p for k > K by Lemma 3.3, we have

K
pi(q)p = < IT - pk(P))> pi(p)p-

k=I+1

Hence

K K K
> SuaSip =YY pl@p=> < IT (- pk(p))> pi(p)p = p-

neEW 1=0 ey ® 1=0 \k=I+1

Let us define a projection pg by pg = 1 —p =1 — Zlepl where pi1,p2,...,pr are the minimal
projections of D). Note that pg,p1,...,pr is a set of mutually orthogonal projections whose sum is 1.
Let J' be a set of all maps from the set W = {u € W,, | |u| < K} to the set {0,1,2,...,L}. For 7 € J,
we define a projection ¢, € Ay by

ar = [] SiprioSu
pnew

Set J={r el |q, #0}.

Lemma 3.6 (i) {¢r}rey is a set of mutually orthogonal non-zero projections.



(i) 3,es0r =0
(i) ForpeW, t €l andl e {1,2,...,L}, we have S.q-S;;p1 = 0r(),19u:4- 5},

Proof.

(i) If 71 # T2, then 7 (1) # 72(p) for some p € W. Now ¢, ¢r, = 0 follows from
(S;prl(ﬂ)sﬂ)(szpﬂ(u)sﬂ) = S;S#S;pn(u)p‘rz(u)su = 07

since gr, < Sppr, (1) S and ¢r, < S\pr, () Sy-

(ll) ZTEJ qr = ZTEJ’ qr = qHuEW S:Z(p() +p1+-- +pL)S,u =4q.
(iii) It follows from the fact that

Su(Spr(uySu) St = SuSipr(wyPrSuSy = 07(u) 19u(S,Pr (1) Su) Sy

Proposition 3.7 We have Ay =2 @ _ ;K. Hence, Ay is an AF-algebra.

TE]

Proof. For any 71,72 € J and p,v € Wy, with u # v, we have (S,q-,5},)(Svq-,5;) = 0 by Lemma 3.4.
Thus, for 71,7 € J and pq, po, v1,v2 € W, we get

(SH1QT15;1)(SM2QT25;2) = 51’17#25#1(]7'1(17'25:2
= 51/17#2571772‘9#1‘]7'1 S:Q'

For any 7 € J, the set {S,,¢-S} },.,,ew, satisfies the relation of matrix units, so the C*-algebra generated
by {S.4-5}}uvew, is isomorphic to K. For any two elements 71,7 in J, the C*-algebra generated
by {S.9- S} }uvew, is orthogonal to the C*-algebra generated by {S,¢-,Si}..vew,. Therefore, the
C*-algebra generated by {S,q;S; | p,v € Wy, 7 € J} is isomorphic to ;K.

Since ¢, € Ay for any 7 € J, the C*-algebra generated by {S,q¢,S} | p,v € W,,, 7 € J} is contained
in Ay. Conversely, forl =1,2,...,L,

b1 = ppi

= Z 5uqS,pp1 (by Lemma 3.5)
HEW

= Z Su ZQT S, (by Lemma 3.6 (ii))
%% TE]

= Y. SuSip
HEW,TE]

= Y 84S (by Lemma 3.6 (iii)).
peEW,rel,
s.t. T(u)=l

Thus, for any p,v € W, andl =1,2,..., L, the element S,p;S;; is contained in the C*-algebra generated
by {S.¢-S} | p,v € Wy, 7 € J}. Therefore A, coincides with the C*-algebra generated by {S,.q,S; |
p, v € Wy, 7 € J} which was proved to be isomorphic to @, ; K. 1

Now we can prove the main theorem.

Theorem 3.8 If w satisfies —w; ¢ {wy | p € Wy} for any i € {1,2,... ,n}, then the crossed product
O XqeG is AF-embeddable.



Proof. The C*-algebra A is an AF-algebra because it is an inductive limit of AF-algebras. Since the
crossed product O, X4« G is naturally embedded into A, it is AF-embeddable. |

Proposition 3.9 When G is compact, the following are equivalent:

(i) —w; ¢ {wu | eWy} foranyie{1,2,... ,n}.

)
(ii) The crossed product O, X oG is stably finite.
(iii) The crossed product O, XowG is AF-embeddable.
)

(iv) The crossed product Oy X oG itself is an AF-algebra.

Proof. (i)=(iv): Note that I" is discrete when G is compact. We can take {{7}}%1, for an open base
{Ui}ier. Then the C*-algebra A which was proved to be an AF-algebra is Oy, X o G itself. Thus, O, x4 G
is an AF-algebra.

(iv)=(ili)=(ii): Obvious.

(i)=-(i): If there exists i € {1,2,...,n} such that —w; € {w, | x € W,,}, then there exists ©' € W,
with —w; = w,y. Hence p = iy € W, satisfies |u| > 1 and w, = 0. Set u = S,x € OpXaeG where
X € Co(') is the characteristic function of {0}. We have u*u = x and uu* = S,xS;. We get x # S,.xS;;
from |p| > 1, and x(S.xS};) = SuxS;, from w, = 0. Therefore x is an infinite projection. Thus Op, x4« G
is not stably finite. |

Remark 3.10 When G = R, Theorem 3.8 implies that O, x,~R is AF-embeddable if all the w;’s have
the same sign. If there exist 4,j such that w; < 0 < wj, then O, x,~R has infinite projections hence
it is not AF-embeddable. We do not know whether O, x,~R is AF-embeddable or not if there exists
i€{1,2,...,n} such that w; = 0 and all the other w;’s have the same sign, though it is not hard to see
that it is stably finite.

4 Pure infiniteness of O, %G

In this section, we investigate for which w € I'" the crossed product O,, x4~ G becomes simple and purely
infinite. Recall that a simple C*-algebra is called purely infinite if any non-zero hereditary subalgebra
has an infinite projection. An element z of a C*-algebra is called a scaling element if (x*z)(za™) = za*
and x*x # zz*. In [BC], B. E. Blackadar and J. Cuntz showed that if a simple stable C*-algebra has a
scaling element, then it has an infinite projection. One can omit the assumption of stability (Proposition
4.2). To do so, we need the following standard lemma.

Lemma 4.1 Let A be a C*-algebra, p a projection of A, and a a positive element of A. If there exist
T1,T2 ..., K and Y1,Y2, ... ,Yx in A with

K
P D kay
k=1
then there exist z1,25... , 22k in A such that
2K
p= Z zjazg.
k=1

In particular, if A is simple C*-algebra, p is a projection of A, and a is a non-zero positive element
of A, then there exist x1,T2... ,xx in A such that p = Zkl,(zl Tiaxy.

<1
2;

Proof. See [D, Lemma V.5.4], for example. |



Proposition 4.2 If a C*-algebra A is simple and has a scaling element, then it has an infinite projection.

Proof. If A has a scaling element, then A has mutually orthogonal, mutually equivalent, non-zero projec-
tions {px}°, and a positive element a with apy = pi for any k [BC, Theorem 3.1]. Since A is simple,

there exist 1,22 ... ,2x and y1,¥ya, ... ,yx in A with
K 1
a_kz_lxkplyk < 5

Let us set p = Zifr ! Pk, which is a projection. Then we have

K K
= aepr(uep)|| = |[(a = D wxpryw)p
k=1 k=1

2)
since ap = p. Hence there exist z1,z29,..., 20K in A such that p = 221:{1 z;p12 by Lemma 4.1. For
k=1,2,...,2K, let u; be a partial isometry with ujur = p1, uruj = pr. Set z = 221:(1 urzk. Then we

have z*z = Zifl zip12, = p. Since zz*(ZiZl pr) = 22*, we have zz* < Eifl pr < p. Therefore p is an
infinite projection. |

A. Kishimoto and A. Kumjian proved that O, x,~R is simple and purely infinite if and only if the
closed semigroup generated by wy,wa, ... ,wy, is R in [KK2]. We will generalize their result for our setting
by using the same technique as in [KK2]. Namely, we will prove that O,, x4« G is simple and purely infinite
if and only if the closed semigroup generated by w1, ws, ... ,wy is . When w satisfies I' = {w,, | p € W, },
the crossed product O, X4«G is simple by [Ki, Theorem 4.4] (see also [Ka, Theorem 4.8]). First we will
show that O,, X4~ G has a scaling element and hence an infinite projection.

Lemma 4.3 Suppose that w satisfies I' = {w, | © € Wy }. For any neighborhood U of 0 € T' and any

positive integer K, there exist K elements pq, pio, -+, pprx of Wy such that w,, € U fork=1,2,... | K
and S;k Sm = 5k,l'

Proof. We can find K elements v1,v,... ,vk of W, such that S}, S, = dk;. For k=1,2,... K, there
exists v, € W, with w,, € U — w,, because U — wy, is open and {w, | p € Wy} is dense in I'. Set

pr = vy, for k=1,2,... K. Then S S = 0k, and wy,, =Wy, + wyy eUfork=1,2,... K. |

Lemma 4.4 Suppose that w satisfies T’ = {w,, | p € Wy }. Let X be a compact neighborhood of 0 € T
that differs from T'. Then, there exist positive functions f1, fa,... , fx € Co(T) and p1, pa, ... , K € Wy
satisfying the following conditions:

(1 :5kl'

) S

(ii) Zk 1fk( )=1 for any v € X.
)
)

(iii Zk 1 fk(v0) # 0,1 for some v €T

(iv) The support of O—w,, Jr is contained in X for k=1,2,... K.

Proof. Let us choose an open neighborhood U; of 0 such that the open neighborhood U = Uy 4+ Uy of 0 is
contained in X, and then choose an open neighborhood Us of 0 such that U, C U,. For any v € T, there
exists 4 € W, with w,, € Uz + 7 because {w, | 1 € Wy} is dense in I". Therefore ¢y, (U2 —wy) =T
Since X is compact, there exist finite elements vy, vs, ... ,vg of W, such that

X g U — Wy, )-
k=1



By Lemma 4.3, there exist K elements v{,v5,... ,Vx € W, such that S;I,c Sl’[ = 0, and wy € Uy for
k=1,2,... K. Set u = v for k=1,2,... , K. Then S5 S =0k For k=1,2,... K, we get

UQ_(UVk cU —w
CUL+ U1 —wy, —wy

k

:U_wuk’

since Uy C Uy and wy €UL. Fork=1,2,... K, let g; € Co(T") be a function with 0 < g < 1 such that
gr(y) = 1for v € Us — wy, and g(y) = 0 for v ¢ U —w,,. Let us choose a continuous positive function F
on I' satisfying F'(y) =0 for vy € X and F(y) =1 for v ¢ Ule(Ug —wy,. ). Then the continuous function
G=F+ Z,{;l gr on I satisfies G(v) > 1 for any « € T since F, g1, go, ... , gk are positive functions, and
F(y)=1for v ¢ Ule(Ug —wy, ), and gi(y) =1 for v € Uz — wy,. Set fr = gr/G for k =1,2,... | K.
Then for k =1,2,..., K, the positive function f € Co(I") satisfies fix(y) =0 for any v ¢ U — w,,,. For
v € X, we have

K K
ka(ﬂ = Z
k=1 k=

Zk 19k( )
F(7) + Y52 96(7)

=1.

Since X ; Uszl(Ug — wy, ), there exists vy ¢ X that is an element of Uz — Wy, for some ko €
{1,2,...,K}. Since Uz — wy,, is open and X is closed, we can choose an open set O such that 7o €
O C Uz —wy, and ON X = (. Let us take a positive function f such that f(vy) = 0 for any v ¢ O
and f(vo) + Zle fx(70) is neither 0 nor 1. Then f; = fi, + [ still satisfies that f; (y) = 0 for
any v ¢ U — w,,. We denote this new function f,’CO by fir,- Then K functions fi, fo,..., fx satisfy

Zszl fe(y) =1 for v € X and Zszl fe(0) #0,1. For k =1,2,... K, since 0_,, fr(y) = 0 for any
v ¢ U C X, the support of 0—w,, fr is contained in X. We get desired elements f1, f2,..., fxk € Co(T)

and py, p2, ..., pxg € Why. |

Proposition 4.5 If w satisfies that T' = {w,, | p € Wy}, then O, X oo G has a scaling element.

Proof. Let X be a compact neighborhood of 0 € T' that differs from I". Let us take positive functions
fisfoy ooy fx € Co(T) and pa, po, ..., ux € Wy, that satisfy the four conditions in Lemma 4.4. Let us

define o = Y1 8, fi/* € On10uG. Since S5, Sy, = G,

K
Z fl/QS* S, 1/2 ka

k=1

On the other hand,

K K
v = 3 (S f 2 0255) = 3 (0 S0 F75050).

k=1 k=1

Since the support of o, f,i/Q is contained in X for any k =1,2,..., K and Eszl fe(y)=1forye X,
we have (z*x)(zz*) = za*.

Finally we show z*x # za*. If 2*z = zz*, then z*x would become a projection. However, x*x =
Zszl fr is not a projection, since there exists vy € I' with Zle fe(70) # 0,1. Thus z is a scaling
element. ]



Since O, X oG is simple, it has an infinite projection by Proposition 4.2 and Proposition 4.5. To
prove that every non-zero hereditary subalgebra of O, x,~G has an infinite projection, we need the
following lemma. In the proof of it, we use some computations done in [Ka] which is not difficult to
see. Let B : T ~ OpXawG be the gauge action defined by 8:(S,fS;) = t|“|*|V‘SMfS;, and F be the
faithful conditional expectation of Opxa«G defined by E(x) = [, Bi(x)dt where dt is the normalized
Haar measure of T.

Lemma 4.6 Let y be a non-zero positive element of O X oG, given as y = Elel S 1Sy, Let C be a
positive number with 1/||E(y)|| < C2. Then, there ezist a € Opx oo G with ||a|| < C and an open set O
of T' such that a*ya becomes an element of Co(T') which is 1 on O.

Proof. Set k = max{|wl,|v||1=1,2,...,L} and
Fr = span{S, fS; | v e WH | f e Co(I)}.

The C*-algebra Fj, is isomorphic to Co(T',M,,») and we will identify them. We can see that F(y) =
2l S J1S5, and E(y) € Fi. Set u = Euewﬁf” 5,5189285 € On, € M(Opxa+G). Routine com-
putation shows that u is an isometry and uw*yu = o4(E(y)) where v = kw; + wa. Hence u*yu is a
positive element of Fj whose norm is equal to ||E(y)||. One can find 79 € T such that the norm of
(u*yu)(v0) € M« is ||E(y)||. The C*-subalgebra span{S,S} | u,v € W,(lk)} of 0, € M(OpxaeG) is
isomorphic to M,» and can be considered as the set of constant functions of Cy(I',M,x) = M (Fy).
Take an element g in WT(Lk) arbitrarily. Then S5} € M(Onxa-G) is a minimal projection of M,k.
Since u*yu is positive, (u*yu)(vo) is a positive element of M, ». Hence, there exists a partial isometry
v € span{S, S} | p,v € W,(Lk)} such that v*v = 5,5}, and

(v utyuv)(h0) = [E@)SuS,

There exists a function f € Co(T') with v*u*yuv = 5, fS};, because the projection S,,5}; is minimal. Since
f(y0) = [|E(y)]|, there exists a positive function g € Co(T") with |g|| < C such that fg?> € Co(T) is 1 on
some open neighborhood O of vy. If we set a = uvS,g € Op X oG, then, we get |jal| < C and a*ya = gfyg
becomes an element of Cy(I") which is 1 on O.

Theorem 4.7 If w satisfies that ' = {w,, | 1 € Wy}, then O xawG is simple and purely infinite.

Proof. To prove that O, X4« G is purely infinite, it suffices to show that there exists an infinite projection
in the hereditary subalgebra z(O,, X o« G)x generated by x for any non-zero positive element z € O,, X G.
Take a non-zero positive element x € O, X,»G and a sufficiently small positive number ¢ > 0. There
exists a positive element y with ||z — y|| < e that is a linear combination of elements of the form S, fS}.
Since ||E(z) — E(y)|| < |z — y|| < &, there exists a real number C' with 1/||E(y)|| < C? which depends
only on z. By Lemma 4.6, there exist a € O, 4G with ||a|| < C and an open set O of T such that a*ya
becomes an element of Cy(T") which is 1 on O. Take an open subset O; of O and a neighborhood Oz of
0 € T with O1 + 02 C O. Let h be a non-zero positive function of Cy(T") whose support is contained in Oy .
The crossed product O, X,~G has an infinite projection p by Proposition 4.2 and Proposition 4.5. Since
O X e G is simple and p is a projection, there exist z1, 23, ... ,xx € O, X4 G satisfying Zszl xrhxy =p
by Lemma 4.1. By Lemma 4.3, we can choose 1, fi2, ... , uxg € W, such that S;jk Sy, = 0k, and wy, € O
for k=1,2,...,K. Set b=31, S, h'/%x;. We have

K K
o= Y A, S = Y e =
k=1 k=1

Since the support of o, (h'/2) is contained in O for k = 1,2, ..., K, and the function a*ya € Cy(T) is
1 on O, we have (a*ya)b = b. Therefore, we get b*a*yab = p. Thus q = (y*/?ab)(b*a*y*/?) is an infinite



projection because it is equivalent to the infinite projection p. The hereditary subalgebra x(O, X v G)x
has a positive element ¢ = 2'/2abb*a*z'/? which is close to an infinite projection ¢. If we choose & > 0 so
small that ||q — c|| < 1/2, then we get a projection gy = x(c) in £(Oy X4« G)x by the functional calculus
where y is a characteristic function of a certain neighborhood of 1. The projection gy of (O, X owG)x is
infinite since it is close to an infinite projection g. Therefore, O,, X 4« G is purely infinite.

Once noting that O, X4~ G is simple if and only if the closed semigroup generated by w1, ws, ... ,wn,
and —w; is equal to T for any i = 1,2,... ,n (see [Ki, Theorem 4.4] or [Ka, Theorem 4.8]), we have the
following corollaries.

Corollary 4.8 The crossed product O, X oG is either purely infinite or AF-embeddable when it is simple.
Corollary 4.9 The crossed product Op X oG is simple and purely infinite if and only if I' = {w,, | p € Wy }.

Remark 4.10 When the group G is compact, crossed products O, x,«G are graph algebras [KP]. From
this fact, one can easily prove Proposition 3.9 and two corollaries above when the group G is compact
(see [BPRS], for example).

Remark 4.11 When the group G is discrete, crossed products O, X« G are never AF-embeddable and
Corollary 4.8 implies that crossed products O, X o« G is purely infinite if it is simple. This fact was already
proved in [KK2, Lemma 10].

5 AF-embeddability of O, x.,.G

In this section, we deal with crossed products of the Cuntz algebra O, which is the universal C*-algebra
generated by infinitely many isometries Si, S, ... satisfying S7S; = 0;;. Let us denote by Wy the
set of words whose letters are {1,2,...}, which is naturally identified with |J;_, W,,. We can define an
isometry S, € Oy for p € W, As in the case of O, we define the action o of abelian group G on
Ou by

oz‘t“(Sl):(ﬂwl)Sl (i:1,2,...,tEG)

for w = (w1,ws,...) € I'™. The crossed product OuXqwG has the C*-algebra ClX,»G which is
isomorphic to Cp(I'). One can easily see that fS, = S,0,,f for any f € Co(I') C O XaeG and any
€ Weo, and

OooXawG =5pan{S,fS, | 1, v € Ws, f € Co(T)}.

Proposition 5.1 If w € I'™® satisfies —w; ¢ {w, | p € Wn C W} for any i and any n € N, then the
crossed product Qs X ow G is AF-embeddable.

Proof. Fix an open base {U,}ic1 such that for any i € I, U; is compact and for any i € I and p € W,
there exists j € I with U; = U; — w,. Let Do(I") be the C*-algebra generated {xu, }ier in L*(T') and
define the C*-subalgebra A of B(H ® L*(T)) by

A =5pan{S, £S5 | v € Wao, f € Do(I)}.

The crossed product Oy X oG can be embedded into A. For a positive integer n and a finite set A C I,
we denote by Ay , the C*-subalgebra of A generated by

{Suxv, S5 | v € Wi C Wao, i € A}

One can easily see that A = lim A ;. Take a positive integer n and a finite set A C I and fix them. Since

—w; & {wy | B € Wy C Wy} for any i, there exists K € N such that pS,p = 0 for any pp € W, C W
with |u| > K by Lemma 3.3, where p is the characteristic function of | J;c, U;. Once fixing such an
integer K, we can define the projection g € Ay ,, in the same manner as in Section 3 and prove the same

statement as in Lemma 3.4 and Lemma 3.5. Hence as in a similar way to Proposition 3.7, we can prove
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that Ay, is isomorphic to a direct product of finitely many K. Hence A is an AF-algebra. Since the
crossed product Oy X 4w G can be embedded into A, it is AF-embeddable. |

In the case of O,, we have the dichotomy (Corollary 4.8). However in the case of O, instead of
dichotomy we have the following.

Proposition 5.2 Forw € I'™°, the following are equivalent:

() T = (o, [ 1 € W),
(il) OcoXawG is simple.

(iil) OuoXawG is simple and purely infinite.

Proof. The equivalence between (i) and (ii) was proved in [Ki]. Obviously (iii) implies (ii). One can prove
the implication (i) = (iii) in a similar way to arguments in Section 4, though we need more complicated
computations to prove the proposition corresponding to Lemma 4.6. |
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