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Abstract

Let (W,S) be a Coxeter system (not necessarily of finite rank), and put 7' =
Uwew wSw™t. For any subset I of S, the centralizer Zy (W) of the parabolic sub-
group Wi is decomposed as (I'N Zw (Wr)) x G, where (T'N Zw (Wr)) is a Coxeter
group, and G is a complementary subgroup whose structure is described by using
a certain graph constructed from the information about finite parabolic subgroups

only.
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1 Introduction

We analyze the structure of the centralizer of an arbitrary parabolic sub-
group in an arbitrary Coxeter group (not necessarily of finite rank). Namely,

let (W, S) be a Coxeter system. A parabolic subgroup of W is the subgroup
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generated by a subset [ of S, and denoted by W;. First we decompose the

centralizer Zw (Wr) of Wy in W in the following manner:
Zw(Wr) = Wiso x (W(®7) x Gf) (= (Wheo x W(®7T)) x G).

Here ['*° is the set of all elements of [ isolated in the Coxeter graph of
Wi, hence Wi forms an elementary abelian 2-group. The remaining factors
are defined in terms of the reflection representation V' and the root system
¢ = ot Ud™ C V for W with simple system I = {ay | s € S} (cf. Section
2). Let ®F be the set of all roots orthogonal to II; = {a, | s € I}. Then
W(®7) is the subgroup of W generated by all reflections with respect to the
roots in ®F, which is also a Coxeter group due to a result by Deodhar [7] or
Dyer [8]. If @ is well understood, the Coxeter generators of W(®7) can be
determined using a result by Deodhar [7]. In a subsequent paper [14], we will
give a new method to give the Coxeter generators of W (®7) concretely, even
if @ is difficult to describe. Note that the factor (T'N Zw (Wy)) in Abstract
coincides with Wy x W(®7).

In this paper, we focus on the final factor (G, consisting of all w € W such
that (1) w - a, = a, for all s € "™, (2) w-a, = fa, for all s € I and
(3) w- (@1 N ®F) = &7 N &F. We determine (7 using a graph G, which we
call the transition graph in this paper. The construction of G is based on the
knowledge of Coxeter systems of finite type only. Our result shows that Gy is
a quotient of the fundamental group of G (which is a free group), and gives a
presentation of (G7 in terms of paths in G and automorphisms of a subgraph
H of G. Furthermore, it is shown that G acts on W(®7) as automorphisms
of the Coxeter graph of W (®7).

In some cases, the structure of Zy (Wj) has been known. If [ = S, then

it is well known that Zy (Wj), namely the center of W, is generated by the



longest elements wq(.J) of W; where J runs over all connected components of
S of finite type such that wg(.J) acts on Il; as multiplication by —1, and is
an elementary abelian 2-group. If [ consists of a single element s, Brink [2]
showed that Zw (Wj) (= Zw(s)) is the semidirect product of a certain Cox-
eter group by a free group. Our results generalize these cases. Recently, we
learned that Bahls and Mihalik [1] described Zy (W7y) if (W, S) is even (that
is, every product ss’ of two generators has even or infinite order) by a different
approach.

There are some results on related topics; the normalizers and commen-
surators of parabolic subgroups in Coxeter groups have been examined by
Brink and Howlett [3] and Paris [16] respectively. Further, the centralizers of
parabolic subgroups in Artin groups of certain types have also been described
by Paris [15].

This paper is organized as follows. In Section 2, we recall some terminology
and basic properties of Coxeter groups and groupoids, which we use in the
analysis of (G7, and show some lemmas used in the following sections. In Sec-
tion 3, we show the decomposition of Zy (Wj) as described above, together
with some remarks on the first two factors. Note that Wy, W(®7) and G}
are denoted by W[x]iso7 W(CI)[J;,]) and G, respectively in the text, by taking
x as in the previous paragraph. In Section 4, we define the transition graph
G and its subgraph H. In Section 5, we examine the group G7. To do this,
we define a groupoid anti-homomorphism ¢ from the fundamental groupoid
of G to a certain subgroupoid ' of G having the same vertex groups as G.
Then we show that ¢ is surjective, and give a generating set of the kernel
of ¢ as a normal subgroupoid, in terms of paths of G and automorphisms of
‘H. This yields a presentation of (7. Finally, Section 6 deals with an example

in full; we compute Zy (W) for an affine Coxeter group using the results of



previous sections. Moreover, we also recover the preceding results on special

cases mentioned above.

2 Background material

A group W is called a Cozeter group (or a pair (W, 5) is called a Coxeter

system) if W is presented as

W ={(S|(ss")" =1 (s,8 € S,mye < 00))

for certain (mg)sses such that mys = 1 for all s € S and my o = my s €
{2,3,...} U {oo} for all s,s" € S, s # s (cf. [11]). The Coxeter graph I' of
(W, S) is the simple, undirected graph on S which has an edge between s and
s’ labeled myg ¢ if and only if m, ¢ > 3 (these labels are usually omitted for the
case ms e = 3). For I C 5, a “connected component of I” means the vertex
set of a connected component of I, where [ is the restriction of I" to I.

Let V' be a real vector space with a symmetric bilinear form (, ), and let

II={as|s€ S}t CV. Then, as in [10], I is called a root basis if

(g, ) = —cos(m/mge) if my e < 00, (as, o) < —1if my ey =00

and 0 € V cannot be written as a nontrivial positive linear combination of
elements of Il (note that S is assumed in [10] to be a finite set, but the
following properties also hold for the case |S| = o0). For any root basis I, an
action of W on V is well defined by s-v = v — 2(a,,v)as, s € S, v € V.
Note that this action preserves the bilinear form. Let ® = W - II. Then we
have ® = ¢t U, &t N d~ = (), where ®T is the set of all v € ® which is

written as a positive linear combination of elements of IT and &~ = —®*, @ is



called a root system of (W, S), and every element of @, ®~ is called a positive,
negative root respectively. Any element of Il is called a simple root. For O C &,
define ¥* = W N ®*. For a root v, we write ¥ > 0, v < 0 instead of v € &%,
v € &7 respectively. Further, for w € W, let ®F = {r € &t | w -~ < 0}.
Then it is shown in [10] that |®}] = {(w), where {(w), the length of w, is the
minimal number & such that w = sy, -+ - s for some s; € S. This implies the

following:
Lemma 2.1. (i) Let wy,wy € W. Then

l(wrws) = L(wy) + (wy) — 2

of nor_,|.
2

Hence ((wywy) = ((wy) + L(wz) if and only if @j;l N (I)Z—l =0.

(ii) If @f = &} | then wy = w,.

Proof. For e1,e9,25 € {4+, -}, let ®.,.,., be the set of all v € &% such that

wy -y € O wiwy -y € 1. Then we have

q)+ — q)__|__|_ |_| q)___|_, q)+

w1 w2 wq

=wy (Poy WD), OF

w

, =P Uy,
so l(wy) + l(wy) — l(wyws) = |P_y_| + |®1_4|. Further, we have
Oy =wy (OL NDF ), Dy =P,

so we have ((wy) + {(wy) — l(wiwy) = 2

, as required. Hence (i)

@;m@%l

holds. For (ii), we have ((w;w;™') = 0 by (i), so wiwy ™! = 1. O]

As shown in [11], for any Coxeter system (W,S5), there are a reflection
representation space V and a root basis II such that II is a basis of V' (as a

vector space) and (as, o) = —1 whenever my o = oo. In this case, the root



system @ is called standard. From now on, ® is assumed to be standard unless
otherwise specified.

For v = ¥ cgcsa, € V, write [a,]v = ¢, and let supp v be the set of all
s € S such that ¢, # 0.

For any v = w - a5 € @, the reflection s, € W about v is defined as

s, = wsw™! and acts on V by s, v =v —2(v,v)v. Then:

Proposition 2.2 (cf. [11]). (i) Let w € W, v € ®t. Then ((ws,) > ((w) if
w-y >0, and l(ws,) < {(w) otherwise.

(ii) For v,74' € ® and w € W, ws,w™' = s if and only if w -y = £+

Further, there are two useful theorems about reflections: the former is The-

orem 5.4 of [6], and the latter is a special case of Theorem 1.20 of [18].

Theorem 2.3. I[fw € W, w? = 1, then w can be written as a product of re-
flections about pairwise orthogonal positive roots (so these reflections commute

with each other). Hence w -~ = —v for some v € ® whenever w? =1, w # 1.

Theorem 2.4. Suppose that |W| < oo, w € W and w fizes some roots

Y1y -k of W. Then w can be written as a product of reflections which also

fix all ~;.

For U C &, let W(W) be the subgroup of W generated by all s,, v € ¥

(such subgroup is called a reflection subgroup) and let W = W (W) - W. Then:

Theorem 2.5 ([7]). W(W) is a Coxeter group with (not necessarily standard)

root system U and length function  such that Z(w) = ‘CI);'; N W‘

Further, let WY = {w € W | &, N ¥ = 0}. Then Theorem 4.1 of [12],

stated only for Weyl groups, is improved for arbitrary Coxeter groups by



similar proof:

Theorem 2.6. Fach w € W is written uniquely as w = w¥wyg, w¥ € WY,

wy € W(U). Further, w¥ is the unique element of minimal length in wW ().

In particular, let Il; = {a, | s € I} for each [ C S. Then W(II;), W
are denoted by Wy, W' respectively. Wy is called a parabolic subgroup, and
(Wi, I) forms a Coxeter system with root system ®; = W;-11; (this is standard
whenever @ is), root basis II; and length function £ |, . Note that W is the
direct product of all W; where [ runs over all connected components of .5; so
(W, S) is called irreducible if S is connected. Now we give a simple proof of

the following well-known facts:

Proposition 2.7. (i) ®; = {y € ® | suppy C I} forall I C 5.

(i) supp v is connected for all v € ®.

Proof. Let v € ® such that suppy C I. Put w = (s,)!. Then w - oy > 0 for
all s € I, while w- ay = as—2(vy,a5)y > 0 for all s € S~ [ since s € supp .
These yield ®} = () and so w = 1, therefore s, € Wj. Then s, -y = —9/
for some ' € ®; by Theorem 2.3. This implies v = £++" and so v € ;.
The converse is obvious, so (i) holds. Further, (i) implies v € ®gypp~, so (ii)

follows. O

Note that ®F, N ®f , = for any w € W, so l(w) = {(w’) + {(wr) by

Lemma 2.1 (i). Further, we have the following:

Proposition 2.8. ®f = &F N &f forwe W, 1C 5.



Proof. ®f C ®F by Proposition 2.7 (i). Further, note that w! -5 is positive,
negative whenever v € ®F, v € ®; respectively. Then for v € &7, wlwr-y < 0

if and only if wy - v < 0. Hence our claim holds. O

For I C S, we say that [ is of finite type if |W;| < oo, or equivalently
|®;| < oo. For such I, let wo(I) denote the longest element of Wi; this satisfies
CI);';O(I) = ®F. Moreover, it is known (cf. [18]) that wo(I) - II; = —1IIj; so
we can define a permutation oy : I — I by wo(I) - as = —a,,s for any
s € 1. Since wo(l) is involutive and preserves the bilinear form, this oy is
an involutive graph automorphism of [';. Note that for I C S of finite type,
wo(l) = wo(ly) - wo(ly) and o, = oy |I¢ for all 7, where I;,..., I are the
connected components of 1. Now a certain numbering on S and the action of
og for each finite irreducible Coxeter system (cf. [11] for the classification) are
listed in Fig. 1; each og(s;) is denoted there by 5, and 3; is omitted if 57 = s;.

Now we have the following proposition, which is a slight improvement of a

result proved by Deodhar in the proof of [6], Proposition 4.2:

Proposition 2.9. Let I C J C S and suppose that J is connected and not
of finite type. Then |®; ~ @] = oco. In addition, if |J| < oo, then there exist

infinitely many v € ®F such that suppy = J.

Proof. First, suppose |J| < oo, so the power set of J is also finite. Since
|® ;| = oo, there is some J' C J such that |V | = co, where W = {v € O |
suppy = J'}. Take such J' as large as possible with respect to inclusion, and
assume J' # J. Then there is some s € J ~ J’ adjacent to an element of J’

since J is connected. Now the action of s maps W injectively into Wy,

< 0o by the choice of J'. But this is contradiction, so we have

while ‘\I;J’U{s}



Sn Sn_1 Sy S1
An(nz1) O—"0 O—0
S1 52 Sn—1 Sn
B, (n >2) N ~ 4
n A\ = O ) ) O
S1 52 Sn—1 Sn

52
O O O O O O
S1 53 S4 S5 S6 S7
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O O O O O O O
S1 53 S4 S5 S6 S7 S8
I3 4
1 O O O O
S1 S9 S3 S4
5
s O O O Hi O O O
S1 S9 S3 S1 S2 53
So S1
L(m) (5 < m < o0) QLO QLO
S1 52 S1 52
(m even) (m odd)

Fig. 1. Actions of longest elements



J' = J, as required.

On the other hand, suppose |J| = oo and let s € J ~ [. Take a maximal
tree on [';. For t € J, let s = sg,81,...,5; = t be the unique reduced path
in this maximal tree from s to ¢, and let v, = spsx_1 - - - s1 - 5. Then we have
suppy: = {8, 81,...,5,} and so all 4, are distinct and satisfy vy, € ®; ~ ®;.

Hence we have |®; ~ ®;| = oc. O

In the rest of this section, we recall the terminology on groupoids (cf. [4], [9]).
A groupoidis a small category such that every morphism is invertible; in other
words, a family G = {G.y}oyev(a) of sets with index set V(G) x V/(G) for
which a partial multiplication is defined and satisfies associativity, existence
of identities and inverses. We often identify such G with the (disjoint) union
of all Gy, ¥,y € V(G). The partial multiplication wqwsy € (., is defined for
wy € Gy, wy € Gy .. The identity exists uniquely in each G ,. For w € G, ,,

! is unique and belongs to G, .

its inverse w™
A subgroupoid H of (i is a subcategory of (G which forms a groupoid. Such H
is called full if H; ; = G, j for all i, 57 € V(H), called wide if V(H) = V(G), and
called normal if H is wide and gzg~' € H;; for all z € H,;, g € G; ;. Further,
any full subgroupoid H C (' is called the restriction of G to V(H). Then for a
groupoid G, the restriction of G' to V’/, where V' is one of the maximal subsets
of V(G) such that G, # 0 for all x,y € V', is called a connected component
of GG. GG is called connected if G consists of only one connected component.
The intersection of subgroupoids Hy, A € A of (¢ is defined naturally, and
also forms a subgroupoid of G. This becomes normal in GG whenever all H,

are. Further, for any subset X C G, the subgroupoid of GG generated by X

is the intersection of all subgroupoids of (G containing X (or equivalently,

10



the smallest subgroupoid of G containing X). The normal subgroupoid of G
generated by X is defined similarly.

A groupoid homomorphism G — G’ is a covariant functor of groupoids G, G’
considered as categories, while a groupoid anti-homomorphism is similar but it
is contravariant instead of covariant. Note that for a groupoid homomorphism
f: G — G its image f(G) may not be a subgroupoid of G, but it forms a
subgroupoid whenever f maps V(&) injectively to V(G”). On the other hand,
its kernel ker f, the inverse image of identities of G’, always forms a normal
subgroupoid of G.

For a groupoid G and its normal subgroupoid N, the quotient groupoid G/N
is defined as follows. Let V(G//N) be the set of all equivalence classes [z] in
V(G), where z is equivalent to y if and only if N,, # 0. Further, let [w] be
the equivalence class of w € GG in G, where w is equivalent to w’ if and only if

w = uw'v for some u,v € N. Then define
(G/N)izy = {[w] | w € Gary for some 2 € [2],y" € [y]}.

Now for [ir] € (G/N)jaygq and [is] € (G/N ), define fur] ws] = [toyw]
where wy" € [wy], wy' € [wy] and wy'wy’ € G is defined. Then this multiplica-
tion makes GG/N a groupoid.

The groupoid version of “The First [somorphism Theorem” is as follows:

Theorem 2.10 (cf. [4], [9]). Let f : G — G’ be a groupoid homomor-

phism such that f is injective on V(G). Then f induces an isomorphism
f:G/ker f — f(G).

One of the important examples of groupoids is the fundamental groupoid
of a graph, which is used in the following sections. Let G be any undirected

graph with vertex set V(G). We define an equivalence relation ~ on directed

11



paths of G; ~ is generated by the relation

-1
61"'€k—1€kek ek—l—l"'en ~ 61”'€k—1€k+1 "'6717

where each ¢; is a directed edge (that is, a directed path of length one) and
c; ' is the opposite edge of e;. This relation ~ is called the homotopy equiv-
alence. Then the concatenation of paths induces a partial multiplication of
homotopy classes, and P(G) = {f(g)%y}x’yev(g) forms a groupoid with this
multiplication, where P(G),., is the set of all homotopy classes of paths from

z to y. P(G) is called the fundamental groupoid of G.

3 Decomposition into three factors

In this section, we show that the centralizer of W; admits a decomposition

W[ jiso X (W(CI)L]) X () as described in Introduction. This is done in two

x [z

steps; Corollary 3.2 and Theorem 3.5. Further, we examine the first two fac-
tors W[x]iso and W(CI)[J;L,]). The remaining factor G, is described in Section 5.

We prepare some notations. In order to deal with the case |I| = oo as well,
we fix a family € of index sets such that for each I C S, there is a unique
A € Q having the same cardinality with I. Then let S® be the set of all
injective maps (" A-tuples” with no repetitions)  : A — S for each A € ,
and let S®) be the union of all S™. For x € S, write xy = z(A) for any
A€ A, and let A(x) = A, l(x) = |A] and [¢] = {2, | A € A(x)}. Note that
A(x) = A(y) whenever ((x) = {(y).

If {(z) < oo, then we take A(x) = {1,2,...,0(x)}. So we write z =
(1,22, .., Tey), and [x] = {21, 22,..., Ty} in this case.

For I C S, let I'* be the set of all s € I which commutes with every s’ € I,

12



or equivalently, the set of all isolated vertices of I7. Let 2,y € S®. Then
define

{w e W |a,, =Fw-a, forall A\ € A(x)}  if l(x) = {(y),
Cpy =

0 otherwise.
Note that the condition a,, = 4w - oy, is equivalent to x)y = wy\w™", so the

centralizer of each Wy occurs as C,, by taking z € S™) such that [x] = 1.

Further, define ¢ = C, N W™ and Cl,=CryD WU that is,

C;w ={weC,y|as =w-a, ify, € [y]™},

Cg/;y — {w = W | Opy = W+ Oy, for all A € A(x)}
whenever {(x) = ((y).

Proposition 3.1. C = {C,,}.,, C' = {C] }zy and C" = {C] },, are

groupoids on S™).

Proof. By definition, the claim is obvious for C' and C”.

Let w; € C’

vy w2 € O and zy € [2]"°. Since w, preserves the bilinear

form, we have y, € [y]™ and so a,, = wjwy - a,. This implies wyw, € C .

Similarly, we have w; ™' € C} ; hence " is also a groupoid. O

Corollary 3.2. Cyp = Wy x O, for every a € S,

Proof. Note that (7 , forms a group by this proposition; then our claim is

deduced by Wi C Z(Cyp) and C%, = Cpp NWE -

]iso

Note that Wi jiso 1s an elementary abelian 2-group generated by [z

For I C S, let ®F denote the set of all roots v € ® which are orthogonal to

13



every a; € II;. Then the following lemma follows immediately from definition

of Uy
Lemma 3.3. <I>[J;,] = w- <I>[Jz;] for any x,y € S®, w e C,,.

Note that for any « € S®), the reflection subgroup W(CI)[J;,]) (cf. Section

2) is a subgroup of C”

x,r?

S0 W(CI)[J;E]) . CI)[JQ‘U] = CI)[JQ‘U] by this lemma. Now define

G, =C" AW® for 2.y € S®: that i
Y T oy ) € ’ at 1s,
Goy ={w e CL, | ®F N Oy =0}

Lemma 3.4. G,y = {w € ), | ()T = w - (®i)*} for any z,y € S,

Hence G = {Gry ey is a wide subgroupoid of C'

Proof. Let w € G ,. Then CI)[J;U] = w- CI)[JZ‘/] by Lemma 3.3, so w - (CI)[JZ‘/])"' C
(CI)[J;,])"' by definition. This implies w-(CI)[JZ‘/])_ C (CI)[J;,])_. Hence we have (CI)[J;,])i =

w - (CI)[JZ‘/])i respectively. The converse is clear. O

Theorem 3.5. C) . = W(®fy) x Gy for every x € S,

Proof. By Lemma 3.3, we have ws,w™' = s,., € W(CI)[J;,]) for all w € C

x,r?

v € ®py; thus W(®g,) is normal in O

T,z

while G, . is a subgroup of C7 |
by Lemma 3.4. Further, Theorem 2.6 implies that each w € 7 , is written

xr

uniquely as w = w'w”, w' € G, ., w"' € W(CI)[J;U]). Hence our claim holds. [

In the rest of this section, we examine the factor W(CI)[J;L,]) and the action
of Gy, on W(CI)[J;,]). By Theorem 2.5, W(CI)[J;,]) is a Coxeter group with root
system CI)[JQ‘U] (note that W(CI)[J;,])-CI)[JQ‘U] = CI)[J;,]). Moreover, its Coxeter generator is

determined by the result of [7]. Namely, let II, denote the set of all y € (CI)[J;,])"'

14



which cannot be written as a positive linear combination of other elements of

(®f;))F, and let Sy = {s, | v € I,}. Then:

Proposition 3.6. (W((I)[t,]),gw) is a Coxeter system with (not necessarily

standard) root system CI)[JQ‘U] and length function (, such that Z@(w) = ‘@j; N CI)[JQ‘U]

According to [14], the set II, can be determined concretely (note that II,
can become infinite even for the case |S| < oo; cf. [14] for detail), even if the
root system of original (W, S) is not well understood. Moreover, we have the

following:

Proposition 3.7. Fach w € G, acts on W(CI)[J;L,]) as an automorphism of
the Coxeter graph I, of (W((I)[t,]),gw) Moreover, this yields a group homo-
morphism Gy, — Autfl,. In particular, the semidirect product W(CI)[J;,]) X Gy

becomes direct whenever Autfl, =1.

Proof. First, we show w -~ € ﬁx for all w e G, 4, v € ﬁx We have w -~ €
(CI)[J;,])"' since v € (CI)[J;,])"'. Assume w - v ¢ II,. Then w - v can be written as
a positive linear combination of 4" € (CI)[J;,])"', ~" # w - ~. This implies that
v is also written as a positive linear combination of w™! -4/, and we have
w4 e (CI)[J;,])"', w™' " % ~. Thus v & II,, but this is contradiction. Hence
w-y € ﬁw

1

Let w € G,,. Then for any v € ﬁx, we have ws,w™ = s,., and w -

v € I, as above. This implies that w induces a permutation o, : Sy
ws,w™! on gx Further, 0,0, = 0y and oy = idg by definition, while

_ ~1 .
Ouw(84)0u(8y) = ws,spw™" and s,s, have the same order. Hence w +— o, is

a group homomorphism from G, to Autfw. O

15



4 Transition graph

In this section, we define an undirected graph G on S*), which we call the
transition graph. This graph is constructed from the information about actions
of the longest elements of finite parabolic subgroups only. In later sections, G
and its subgraph H are used for describing the structure of the centralizers.

In what follows, it is important that we work with ordered tuples x € S,
Similar arguments appeared in [3] or [16], but they dealt with subsets of S
only, in which the order was not relevant.

For I,J C S, let I.; denote the union of all connected components of I U .J
containing some s € J. We write I, as a shorthand for /.. Further, if

x € S™), then we write z.; instead of [z]_;. Now define
B={(z,s)|zeSM, se S~ [z], 2, is of finite type}.

For (z,s) € B, put

we = wo( s )wo(Tms ~ {5}).

Then, since wo([) - lI; = —II; for any I C S of finite type, there is a unique

y € S such that ((y) = £(x) and a,, = w? - a,, for all A € A(z). Now define

ple,s) = (ol 5), i@, 5)), where
polw,s) =y, ilw,s) = 0u(5)
(cf. Section 2 for definition of o). Then:
Remark 4.1. [z]U {s} = [p.(z,s)]U {@i(z,s)} for any (x,s) € B.

Lemma 4.2. [f [ C J C S and J is of finite type, then (wo(J)wo(l))™" =

wo(Swo(os(1)) and CI);';O(J)IUO(I) = ¢ < o7F.

16



Proof. We show CI);';O(J)IUO(I) = (I)j;o(a] 1))wo(J); then we have wo(J)wo(l) =
wo(oy(I))wo(J) and so (wo(J)wo(I))™" = wo(J)wo(os(1)) since the longest
elements are involutive.

Obviously, we have ®I+U0(J)w0(1) c oF, oF C ®F. Let v € @F.

wo (o (1))wo(J)
Then wo(J)wo(l) -y < 0 if and only if wo(l) -~ > 0 (since wo([) -y € ®y),
or equivalently v € ®F. Thus we have (I)j;o(J)wo(I) = &% \ ®F. Similarly,
wo(oy(I))we(J) -~y < 0if and only if we(J) -y & CI);J(I) (since wo(J) - v <
0), or equivalently v ¢ ®F; thus &7 (o (D)wo(J) = &% . ®F. Hence we have

wol\o g

CI)j;O(J)wo([) = CI);';O(UJ(I))IUO(J), as required. 0

Corollary 4.3. ¢ is an involution on B. Further, wzi(é’;)) = (w)™" for any

(x,s) € B.

Proof. For (z,s) € B, we have

Tms = UxNS(l'Ns ~ {5}) L {991(1'75)}7

[pol@, )] = oo (@ns N {s]) U ([2] N 2ns)

by definition of ¢. Then @,(,5)ng(2,s) = Tns and so p(x,s) € B. Thus ¢
maps B to itself. Further, ¢;(¢.(z,s), pi(x,s)) = s since o, is involutive.

Finally, the previous lemma yields

S

(W)™ = wo(wns)wo( s (2ns s {5}))

= w0(u(2, )i (0510020 (T )i (s) ~ {1(,8)}) = w02

which implies ¢, (@u(2, 8), pi(x, s)) = « by definition. O

Let

B? ={(xz,s) € B|p(x,s) = (x,s)}.
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Then by Remark 4.1, (x,s) € B? if and only if (x,s) € B and ¢,(x,s) = .
Now let H be the directed graph on S™ having an edge ¢ from z to p,(z, s)
with label s for each (x,s) € B ~ B¥. Then the above corollary implies that
for each edge €7, the edge eii(@;)), denoted by (ef)7!, exists and goes from
@y(7,5) to . Note that ((e£)™')~' = e%. Then let H be the undirected graph
on S® obtained from H by identifying each edge €2 with its inverse.

When we draw the picture of H, an edge, obtained from e? and its inverse, is
represented as an edge with labels s close to the vertex a and ¢;(x, s) close to
@y, 8); moreover, for the case s = p;(x, s), the repeated s’s may be replaced

by a single s. See Fig. 2 below for example.

For x € S™_ define

CO(x) = {A C A(x) | 4 is a union of connected components of [z]},

COZL (z) = {A € CO(x) | 4 is of finite type, x40 =0},

where
J}A:{J}/\|)\€A}.

These families form elementary abelian 2-groups with symmetric difference
of sets as multiplication. This multiplication of A and A’ is written as AA’.
Further, for A € COZ. (), let 2 be the unique element of St satisfying
(z?) = (z), (M) = o, (xy) for all X € A and (%)) = z) for all X €
A(x) ~ A. Then we have (z4), = wo(wa)zrwo(z4) for all A € A(x) since x4 is

a union of connected components of [z].

Lemma 4.4. Let v € S® and A, A" € COZ! (). Then:
(i) CO(a?) = CO(x) and COZL (z*) = COZL ().

(ii) (2 = 224
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Proof. By the above remark, we have m,ay, (z4), = Myu,q, for all A\,u €

m

A(2); hence (i) holds. Further, (ii) follows immediately from the fact that

AA € COZ})O(J}) and o, (2)) = 0, ,(xy) for any A € AN A O

For any graph G' with vertex set V(G’) and « € V(G'), let G/, denote the

connected component of G’ containing . Then for € S®, let
A, ={A€COZL () | 2 € V(Her)}

Now let G be the graph obtained from H by adding the edge ¢, for each
z € S® and A € A, from = to z* with label A. Since A,. = A, for
any A € A, (as checked in Lemma 5.15 of the next section), the edge e?,,

denoted by (e2)7!, exists and goes from z# to x for any edge e2. Note that

((eh71)=t = €. Then let G be the undirected graph obtained from G by
identifying each edge with its inverse, so G contains H as a subgraph. Note
that V(Gey) = V(Hns). Further, as showed in the next section, the structure

of the factor GG, , is indeed deduced from only the connected component G.,;

so we need to compute only the component G, not the whole of G.

Example 4.5. Let (W, 5) be a finite Coxeter system of type Bs with num-
bering on S in Fig. 1, and let « = (s1, 83, 84). Then G, is as in Fig. 2, where
x' = (81,84,83), Yy = (84,81,52) and y' = (84, S, 51). (For simplicity, every loop
e? is omitted in this figure.)

For example, (x,s5) € B and p(x,s5) = (2/, s5); in fact, w0, = {53, 54,85}

is of finite type, and we have

0'{53,54,55}0'{53,54}(33) = 0{53754755}(34) = 34,

0-{53754755}0-{53754}(54) = 0{53754755}(53) = 83
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{2,3}

{2,3}

Fig. 2. Transition graph for Example 4.5
(cf. Fig. 1). On the other hand, we have COZ! (y) = {0.{2,3}}, and y(z3, =
81,82}, Ofs, 5,1(81) = S2, 014, 5,1(82) = 81. Then y{2’3} = y'. Other edges are
{5182} {s1,52} g

obtained similarly (note that (y, ss), (v', s5) € B¥).

5 The factor G, ,

In this section, the remaining factor GG, of the decomposition is examined.
We give a presentation of this group by using the graph G defined in Section
4.

The main results of this section, which we prove later, are as follows. First,

we introduce a subgroupoid H of (G; define
H=Gnc",

so H is a wide subgroupoid of G and C”. Then:

Proposition 5.1. H is a normal subgroupoid of GG.

Further, let G' be the wide subgroupoid of G' such that G, = G, , if
Hyy #0, G, =0 otherwise. Then H C G and G, , = G, for all z € S,
so we treat GG’ instead of G in this section.

For any undirected graph G'; let P(G") (P(G'):,) denote the set of all di-

rected paths of G’ (from z to y, respectively), and let P(G’) denote the funda-
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mental groupoid of G’ (cf. Section 2). The homotopy class of p € P(G') is de-
noted by [p]. Secondly, we define groupoid anti-homomorphisms ¢ : P(G) — G’
and h : P(H) — H which is the restriction of g, and show that these are both

surjective. Recall that w? = wo(@~s)wo(aas ~ {s}) for (z,s) € B and let
wh = wo(wa)
for each A € COZ!, (). Then:

Theorem 5.2. (i) w? € H, (v for any (z,s) € B~ B?.

(il) w? € Goa, for any A € COZL ().

(iii) There exists a unique groupoid anti-homomorphism h from P(H) to H
which sends each [ef] to w?. Moreover, this map is identity on S® and sur-
jective.

(iv) There exists a unique groupoid anti-homomorphism g from P(G) to G’
which is an extension of h and sends each {eﬂ to wA. Moreover, this map is

identity on S™) and surjective.

By this theorem, ', I are anti-isomorphic to the quotients P(G)/ ker g,
P(H)/ ker h respectively. In particular, let g,, h, be the restriction of g,
h to f(g,%), f(?‘lwx) respectively. Then G ,, H, , are anti-isomorphic to
(P(Guw)/ ker g2)ows (P(Hwaw)/ ker hy)sn tespectively. So thirdly, we describe
the structure of ker ¢,, ker h,. For I C 5, let H(D be the ‘restriction’ of H to
I; that is, the subgraph of H consisting of all y € S®) such that [y] C I and
all € such that [y]U {s} C I. Note that (e3)~! € HU) if and only if e € HD.

Then:

Theorem 5.3. (i) kerh, is generated as a normal subgroupoid by all [p],

p € Ri(x), where Ri(x) is the set of all nontrivial simple closed reduced paths
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p=eteein € P(Hey) contained in some HD such that |1 < [y]] = 2 and
I (s, .5, 15 of finite type.

(i1) ker g, is generated as a normal subgroupoid by all [p], p € Ry(x)U Ry(x)U

Rs(x), where Ry(x) consists of all paths efeﬁ(eﬁA/)_l, y € V(Gus), A A" €
A, and Rs(x) consists of all paths ef/eév(w)(ez,q)_l(ef‘)_l, y € V(Guy), s €S,

Y

AcA,.

Now certain presentations of (P(G.,)/ker g,)pr and (P(Haw)/ ket hy)p o,
therefore of GG, ,, and H,, ,, are obtained from these results. Let T}, be a maximal
tree in H., (this is also a maximal tree in G.). For each y € V(G..), let p,
be the unique reduced path in T}, from x to y. Moreover, let E(G.y), E(H~s)
denote the set of all directed edges of G, H~, respectively; so every element
of Ri(xz), 1 =1,2,3 can be regarded as a word on £(G.,). Then Theorem 5.17

of [5] yields the following:
Theorem 5.4. (i) (P(H~)/ ket hy), . has the following presentation:
(E(Hew) [ {ee™ [ e € B(Hun)} Ufe | e € T} U Ri(x)).
(i1) (P(Guz)/ ket gi)p e has the following presentation:
(E(Gns) | {ee™" | € € E(Gua)} U{e | € € T} U Ri(x) U Ro(x) U Ra(x)).

Moreover, in each presentation, a generator e € FE(Gn,) corresponds to the

coset containing [pyep.~'] where € is an edge from y to z.

Finally, in order to simplify the above presentation of GG, ,, a certain smaller
generating set of G, , and their multiplication are described in Corollary 5.19.

From now on, we start proving the above results.
Lemma 5.5. If G, # 0, then CO(z) = CO(y) and COZL (x) = COZL (v).
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Proof. Take any w € G, . For A, € A(z), we have

<ozm,ozm> = <:|:w Coy,, Tw - ozyﬂ> =4+ <O‘ymayu> \

and so <ozm, ozxﬂ> = <ozyk, ozyﬂ> since they have the same signature. Thus we

have mg, ., = my, 4, and so our claim holds. O

Remark 5.6. By this proof, each w € C,, induces a graph isomorphism

Yy — xy from I7,) to I,

Owing to this lemma, we define a groupoid COZ})O on the set of equivalence

classes in S™ by

(COZL)eg = COZL(2) if T =7, (COZ, )zy = 0 otherwise,

o0

where z is defined to be equivalent to y if and only if G, # (.

Proposition 5.7. The map G — CO2Z!

<00’

Goy 2w Ay, € (COZL )7 is a

groupoid homomorphism, where

Ay = {)‘ S A(x) | Qg, = —W- O‘yx}'

Proof. Let w € G, . If y, is adjacent to y, (or equivalently <ozyk, ozyﬂ> < 0),
then A € A, if and only if © € A, since <w SOy, W ozyﬂ> = <ozymozyﬂ> and
<ozm,ozm> < 0. This implies A,, € CO(y).

If y\ € y4,°, then we have y, € [y]iso and o, = —w - oy, but this is
impossible since w € €7 . So Y4, = (. Further, we have CI);'AM C ®f, s0 ya,
is of finite type since ‘@;’Aw‘ < |9} ] = ((w) < co. Thus we have A,, € COZL (y)
and so this map is well-defined.

The rest of our claim, namely A,,, = A,A, for w € G, ,, v’ € G, , and

Ay-1 = A, (= A1), immediately follows from definition. O
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Note that H = G N C" is the kernel of this homomorphism, so Proposition

5.1 follows.

Lemma 5.8. Let x € S®, [ C S and suppose w € Wiur, w - Iy C I and

; C ®F. Then [z]N1 =0, x~y is of finite type and w = wo(xp)wo(z~s ~1).

Proof. [¢]N[ =0 and w € O, for some y € S™) by the hypothesis. Now we

show @f = of oF

ror~I°

Since w € Wiy, we have ot C CI)E;]U[. It v € CI)E';,]U[ and w -+ < 0, then

suppy N I # () since w € C!

o and so suppy C z; since supp 7y is connected.

Thus v € CI);'NI ~ CI);'NI\I. Conversely, suppose v € CI);'NI ~ CI);'NI\I. Take any
s € suppyN 1. Then we have [oy] w- ;s # 0 for some ¢ € S\ [y]; otherwise, we
have oy = w™lw-ay € w_l-q)[y] C P, since w € Czl//,w but this is contradiction.

Then, since [a;]w-a,, =0 for any A € A(x) and [oy] w- oy <0 for any s’ € 1,

_|_

ror~I°

we have [a;]w -y <0 and so w-v < 0. Thus &f = &} ~ @
Since |®F| = {(w) < oo and xor ~ [ C x~j, Proposition 2.9 implies that

—(I)+

zaug)wo(zar~I) = Tw

x~g 18 of finite type. Further, Lemma 4.2 implies that CI);';O(

so we have w = wo(@~g)wo(xar ~ 1). O

Proposition 5.9. Let (z,s) € B. Then (z,s) € B? if and only if @}, ﬂq)[t,] +
0.
(w5)

() = W5 and so (w2)? =

Proof. Suppose ¢(x,s) = (x,s). Then we have wzi

1. So by Theorem 2.3, w? - v = —v for some v € ®} . Now we have

<770‘1’A> = <wasc ) %w; ) O‘l’x> = <_77a@v(l’75)>\> = - <7705xx>

for all A € A(z) since ¢,(x,s) = 2, 50 v € ®F. N CI)[J;U].

Conversely, suppose v € ®f. N CI)[J;U], so v € ®f and s, € C7 . Further,
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since v € CI)[J;U], we have

L=(y, )= Y ([adv) {7 00) = ([aa]7) (7, )

tesuppy
and so (v, a,) > 0. This implies s, - a5 < 0; in fact, this is obvious if vy = a.

On the other hand, if v # «, then [ay] ¥ > 0 for some ¢ € S\ {s}, so we have

o (s, - @) =[] (s — 2 (3,0, 7) = =2 (7. ) [a] 7 < 0.

Thus s., - s < 0. Hence we have s, = w? by Lemma 5.8, and so ¢,(z,s) = «

: "
since s, € O . O

Then Theorem 5.2 (i) now follows immediately; for such (x,s), we have
w; € C7 (4, by definition of ¢,, while oF. N CI)[J;U] = () by Proposition 5.9.
Hence w} € H,, (5. Moreover, since (w})™' = wzi(é’;)), the groupoid anti-
homomorphism A, as in Theorem 5.2 (iii), exists uniquely and is identity on
S™) (by the fact that P(H) is a free groupoid on H; cf. [4], [9]). For each
p € P(H), we write h(p) as a shorthand for A([p]). Now we show that h is
surjective, which completes Theorem 5.2 (iii). For any p = ellel2 ---ein €

P(H), we say that p is nondegenerate if {(h(p)) = 7=, {(w)), degenerate

otherwise. Note that ((h(p)) < 31, {(wyi) for any p € P(H).

Lemma 5.10. Suppose w € C I C S and 1l C ®}. Then [yJN 1 =10 and

x,Yy?
J =y~ is of finite type. Further, ((w) = {(w’) + ((wy), o = ot N ot

wy = wo(J)wo(J ~\ I) and wy; € C, for some z € S,

Proof. [y]NI = since II; C @} and w € C7 . Further, {(w) = {(w”)4+{(wy)

and @} = & N ®F by Proposition 2.8. So II; C @ .
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Let A € A(y), yr € J. Then we have
Opy = W~ Qy, = wlwy - Oy, = Z([at] wy - ozyk)w‘] oy,
tedJ
Since w’ - a; > 0 for all t € J and a,, & ®F D ®F . the right side of the above
equality is a nonnegative linear combination of positive roots, while the left
side is a simple root. This means that [oy] wy - oy, > 0 for exactly one ¢t € J;
that is, wy - @y, is a simple root. Thus we have w; € C for some z € S,
Now Lemma 5.8 implies that .J is of finite type and w; = wo(J)we(J ~ 1), as

required. O

The surjectivity of h is deduced from the following:

Corollary 5.11. For any w € H,,, there exists a nondegenerate path p &
P(H)yw such that h(p) = w. Further, if s € S and w - a; < 0, then we can

take such p containing e as its first edge; in particular, (y,s) € B~ B¥.

Proof. The case ((w) = 0 is obvious, so suppose {(w) > 0. Let s € 5,
w - a, < 0. Since w € €7, Lemma 5.10 implies that (y,s) € B, {(w(w})™") =
l(w) — l(w;) < (w) and q)ttf, = ®f N &) . Then we have q)ttf, N oy C
ot N CI)[JZ;] = () since w € H,,. So we have (y,s) ¢ B¢ by Proposition 5.9,

and w € Hy, (y.5)y, therefore w(w?)™' € H, ,,

(v,5)- Now by induction on £(w),
there is a nondegenerate p’ € P(H),, (y,5)» such that h(p') = w(w))~". Then

p = e;p is a required path (note that s is an anti-homomorphism). O

Remark 5.12. Although Proposition 5.5 of [6] is similar to Corollary 5.11,
they have the following differences. In this corollary we deal with transition

between ordered tuples, while [6] deals with transition between subsets of
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only. Moreover, this corollary gives a decomposition of w in H, while [6] only

gives a decomposition in C”| a larger groupoid than H.
Remark 5.13. A, = {A € COZ. (2) | H,a, # (0} since h is surjective.
On the other hand, Theorem 5.2 (ii) is deduced from the following:

Lemma 5.14. wi € G,a, and A,a = A for any A € COZ_ (x).

Proof. Since x4 = (), we have wo(z4) € C!4 , by definition of z?, while

CI);';O(Z,A) N CI)[J;U] = () since wo(x4) € Wiz, Thus wo(za) € Gpa,. Awg(es) = A ls

obvious. O

Now we show Theorem 5.2 (iv).

Lemma 5.15. (i) If G, # 0, then A, = A,. (So A,a = A, for any A €
COZL (x) by Lemma 5.14.)

(ii)) Ay € A, for anyw € G, .

Proof. (i) Take any w € G, ,, and let A € A,. For A € A(y), let €\ be + or

— such that a,, = e w-ay,. If A ¢ A, then we have

Oé(xA)X = Qg = ENW Oy, = E\W - O‘(yA)y

Suppose A € A, and let o, (y») = y,. Then we have o, ,(x,) = x, by Remark
5.6. Further, ¢\ = ¢, since y, and y, belong the same connected component

of [y]. So we have



Moreover, ®; N CI)[JZ‘/A] =& N CI)[JZ‘/] = () since w € Gy y. Thus w € Graa. We
distinguish this w by writing w’. Then the above argument shows A, = A,,.
Since A € A,, there is a path p € P(H), 4. Now we have w'h(p)w™! €
Gpayalya Gyo C Goa, and Ayt = Aul(Ay)™ = 0, so w'h(p)w™ €
H, 4. This implies A € A;, so we have A, C A,. The converse is similar.
(i1) wv € Gpaw, by Lemma 5.14, while some w’ € H,, exists by definition
of G’. Then we have w»ww'™" € Gpaw p and A w1 = AyALD = 0, so

whw ww' ™t € Hya - This implies A,, € A,. O

Proof of Theorem 5.2 (iv). Let A € A,. Then by Lemmas 5.14 and 5.15,

we have w? € Ga, (since Hya , # 0) and (w?)~! = w?, (since (z)4 = x4).

So, similarly to the case of h, such ¢ exists uniquely and is identity on S®).
We write ¢g(p), p € P(G) as a shorthand for g([p]).

Now we show that g is surjective. Let w € G, . Then witv € Goau , and
A pu, = AyA, = 0. So we have wivw € Hya,, and then wivw = h(p)
for some p € P(H), 40 since h is surjective. Further, the edge ef* exists
by Lemma 5.15 (ii). Thus we have p' = p(et=)~! € P(G),. and ¢(p') =

(wA=)~Lh(p) = w. Hence g is surjective. O

From now on, we prove Theorem 5.3. Note that A, = A, whenever y €

V(Guai) = V(Her), by Lemma 5.15 (i).

Lemma 5.16. Let A € A, and €y € Huw. Then €ya € Ho and c,ov(yA,s) =

A ws(wA)_1 = W, 4 in G.

ooy, s)*. Further, wi = wpa in Woand wg (, owy(w,

Proof. Put p(y,s) = (z,s'). Then we have w; € C, , similarly to the proof

Y

of Lemma 5.15 (i), while w;} - oy < 0. So Lemma 5.8 implies that (y*,s) € B,
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w, = w;a and wu(y?,s) = 24 Now y # z implies y* # 24, so (y*,s) € B¢.
Further, since y € V(H,) and A € A, we have y* € V(H.,) and so
€ra € Huo.

Now we have wfw;(wj)_l € G.a H,,G, 4 CG,a,a. Further, since wj €

Wiy, we have (wf)_l coy € CI);'NS ~ (I);;S\{s} and so w;(wf)_l ca, € CI)Z_NS/ ~

A

z

A
Y

2 (wy )™ € Wiyajugs,

)7, < 0. Then, since w ;

O sy therefore w'w; (w

A

Lemma 5.8 implies that wfw;(wy

)7l = w? 4, as required. O

Corollary 5.17. (i) For any edge e; of H.p and A € Ay, €4 is also an
edge of Her from y? to o,(y,s)* and eii((yy’;))A = (eZA)_l. Hence we can define
pa € AutHe, by paly) = y* and paley) = era, and it induces a groupoid
automorphism pa on P(Huy).

(i) wh(p) () = h(Fa(p)) for any p € P(Ho)y and A € A,

(iii) A, is a subgroup of COZL ().

(iv) Both A, > A py € AutHep, Ap 2 A= pa € AutP(Hay) are group

homomorphisms.

Proof. For any edge € of H., and A € A;, we have ¢,(y?,s) = @u(y,s)*
by Lemma 5.16. So [¢,(y*, 5)] = [pu(y. s)], while [y*] U{s} = [y]U{s}. Then
we have oi(y4,s) = @i(y, s) by Remark 4.1; thus (i) holds. (ii) is deduced by
repeated use of Lemma 5.16.

Now we show (iii). Let A, A’ € A,. Then some p € P(H), 4 exists, 50
par(p) € P(H),ar yaw. Thus we have P(H),a aar # 0, therefore 244" €
V(Hoya) = V(Heo) since A € A,. This implies that AA’ € A,; so (iii)

holds. Finally, (iv) immediately follows from definition. O

Proof of Theorem 5.3 (i). Let N, be the normal subgroupoid of P(H..)
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generated by all [p], p € Ri(x). Then we show ker h, = N,.

Claim 1. N, C ker h,,.

Proof of Claim 1. Let p € Ry(2). Then p is of length at least two since H has
no loops. Now sy # ¢;(y1, $1) since p is reduced, and so sz & [y2]U{¢1(y1,51)} =
[y1]U{s1}, therefore I = [y1]U{s1, s2}. This implies that I\ [y;] C J for all ¢ by
induction, where J = I, 5,3. Thus we have h(p) € Wy, while h(p) € Hy, 4,
and .J is of finite type. So Theorem 2.4 implies that h(p) can be written as a
product of reflections in Wy which fix I}, jn; pointwise. Now since no element
of [y1] ~ J is adjacent to an element of J, these reflections in fact fix Ilj,
pointwise. This yields h(p) € I/V(CI)[J;/1 )N Hy, .y, while W(CI) )ﬂ Hy, ,, =1by
Theorem 3.5. Hence h(p) = 1. (End of proof of Claim 1)

We show kerh, C N,. Let p = el ---e;n € P(Hn,) such that h(p) =1 (so p
is a closed path). We show [p] € N, by induction on |p| = 377, {(w}:). This is
obvious when |p| = 0, so suppose |p| > 0. Then p is degenerate since h(p) = 1,
while e’! is nondegenerate. So there is some index 1 < & < n — 1 such that
(1.k) 5

1,k+1) ¢ J) — Sidl ...
is nondegenerate and p(***t1) is degenerate, where p(t7) = ¢? WEG T ey

P
for any indices 7, j. Put w = h(p{1®)~!
If sp+1 = wi(yk, Sk), then we have [p] = {p(l’k_l)p(k"'z’”)} € N, by induction.

So we may assume Sgi1 € [ypr1] U {@i(yr, sk)F = [ye] U {5k}
Claim 2. w - ayy(y,.s,) < 0 and w - o, <0.

(1,k—1)

Proof of Claim 2. Since p is nondegenerate, Lemma 2.1 (i) implies

that ®F LN CI)"' = (), while (w*)~" - o

(lkl) llz

y < 0. Thus we have

(pl( Yk Sk
TW e gy (yg,sk) = h(p(Lk_l))_l ‘ (_(wzs/:)_l : O‘wz(yk78k)) > 0.

On the other hand, £(h(pM 1)) < £(w™) + £(w 5k+1) by the choice of k, and

so ®t N <I)+ 41 7 O by Lemma 2.1 (i). This implies that w - ay,,, < 0 since

Wypa1
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we " and ®Z5k+l C o (End of proof of Claim 2)

Y1,Yk+1 ah (Y1) ~op g

Put I = [yrs1] U {pi(yr, sk)s skg1} and J = Lofg(ys0).564,3- Lhen Lemma
5.10 implies that J is of finite type, wy - gy, s) < 0, wy - g, <0, wy €

H

ZYk41

and w’ € H,, . for some z € S®. Further, by Corollary 5.11, there are
nondegenerate paths ¢ € P(H).y,, (¢5) g2 € P(H)y,,, .- such that h(q) =

w h((ef/;)_lcp) = wy and (ezlz)_lqz is contained in H(Y) (since wy € Wy). Note

that ‘(GZIZ)_IQQQI‘ = ((w’) + ((wy) = {(w). Similarly, there is a nondegenerate
path e*t1g3 € P(H),,,, . contained in HU) and satisfying h(e3+1q3) = wy.

YE+1 YE+1

Note that

ezlziiq;),ql‘ = l(w).
Yk

Claim 3. {eiiﬂq?,q{lesk} € N,.

Proof of Claim 3. By the above argument, p’ = eJ*+!gsqy ™" eF € P(Hoy) is

YE+1

a closed path contained in HW, |1\ [yx41]] = 2 and o py,,,) = J is of finite

ki1
type. Now we can write [p/] = [picipi™" - pmcmpm '], where p; € P(HU)
and ¢; € 77(7-[(1)) is a nontrivial simple closed reduced path. Thus ¢; € Ry(x).
Hence we have [p'] € N,. (End of proof of Claim 3)

Claim 4. {p(l’k_l)qqu} € N, and {ql_lq;),_lp(k“’”)} e N,.

Proof of Claim 4. By the choice of ¢, ¢, we have
O ga) = 0 (g () = wh(p) = 1,

while A(pU+1m)) = h(p)h(pt"*)~! = w implies that

e’k

— |e%k
Yk €

Yk

‘p(l,k—l)qqu‘ _ ‘p(l,k—l)‘ + (E(w) N

) < ‘p(l,k—l)‘ + ‘p(k—l—l,n)

< |p|.

Thus {p(l’k_l)(h(h} € N, by induction. Similarly, we have

P~ g™ ) = (gt ) ™ (gt () () =1,

Yk41 Yk41
a5 P = (€)= [egin) 4 [p 4] <
SO [ql_lq;g_lp(k“’”)} € N, by induction. (End of proof of Claim 4)
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(1,k—1)

] = [PV gaqu]

: {91_1(]2_1€Zﬂ {eiiﬂ%%_lex} {91_1%_162@}_1 : {91_193_1p(k+2’n) .

we have [p] € N, by Claims 3 and 4. Hence ker h,, C N,. O

Proof of Theorem 5.3 (ii). Let N, be the normal subgroupoid of P(G..)
generated by all [p], p € Ri(x) U Ra(2) U Rs(x). Then we show ker g, = N,.

First, we show N, C kerg,. Theorem 5.3 (i) shows that [p] € kerh, C
kerg, if p € Ry(z). For p = eé‘e;‘;(eﬁA/)_l € Ry(x), we have wo(yaa) =
wo(yar)wo(ya), wo((y?)ar) = wo(yar) since A, A" are unions of connected com-
ponents of [y]. So we have g(p) = 1. Further, by Lemma 5.16, we have g(p) = 1
for any p € Rs(x). Thus N, C ker g,.

Conversely, we show ker g, C N,.. Take any p € P(G..) such that g(p) =1,
and we show [p] € N,. Note that N, C kerg, as proved above. So by
repeated use of elements of Rs(x), we may assume that p is of the form

A

Alejﬁl € Ay p' € P(H~,) without changing whether [p] € N, or

p'e;
not.

Since g(p) =1 € H, we have ) = Ay(,) = A1 Ay -+ - Ap. Then we have

Al A2 Ak
|:€y eyAl s eyAl"'Ak—l
[ A A Ap_1 Ay Apg
= |:€y eyAl s eyAl...Ak_2 eyAl"'Ak—l
_ A1 Ak—2 Al"'Ak—2 A1~~~Ak_2 Ak—l A1~~~Ak_1 -1
= |:€y yAl”'Ak—S eyAl'”Ak—2 ey eyAl”'Ak—2(ey )

and so {e?le;‘jl . -ej,ffl...Ak_l] € N, by induction on k. Since N, C ker g,, this

implies h(p') = 1; so [p'] € kerh, C N, by Theorem 5.3 (i). Hence we have

[p] € N, as required. 0

Finally, we examine the structure of (G, , more precisely. Recall that H, ,
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is normal in G .

Lemma 5.18. The map G, ,/H;, 3 wH,, — A, € A, is an isomorphism

of groups.

Proof. The well-definedness and injectivity of this map are deduced from the
definition of H and Lemma 5.15 (ii). For A € A,, we have h(p)~*w? € G,
and Aj,)-1,2 = A for some p € P(H), 4 since x4 € V(H.y); thus this map

is surjective. O

Corollary 5.19. Suppose that the group A, is generated by certain elements
A,. For each v, let p, = pya, ()71 € P(G)y -

(i) G, is generated by all h(q), ¢ € P(H)e. and all g(p,).

(i1) 9(p)h(q)g(Dv) ™ = P(pa, (Poav ™ qpoas)).

(i) g(p.)* = h(poavpa, (Poar ).

(iV) g(ﬁ”l)_lg(ﬁlQ)_lg(ﬁl’l )g(ﬁlQ) = h(pr”2 ﬁAl’Q (pr"l )ﬁAul (pr”2 )_lpr”1 _1)'

Proof. Let w € G,,. Then A, = A, --- A, for some indices 14,...,v; by
the hypothesis. Since Ag(gy) = A,, we have wg(p,, )™+ (p,,)™" € Hyz, and
so it is written as h(q), ¢ € P(H)s since h is surjective. Hence (i) holds.

Further, (ii)-(iv) are deduced from Corollary 5.17 by direct computing. O

6 Examples

Example 6.1. (W, S) is of type B; and z = (1,2,4,5,8) € S®)_ as in Fig. 3 (in
this section we write ¢ as a shorthand for s;). Then we compute the centralizer

Cx,x of W{1,2,4,5,8}-
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4
® ® O—0O ®
4 5 6 7 8

Fig. 3. Coxeter graph of type E
1. Fig. 3 implies [:zj]iso = {1,2,8}. So by Corollary 3.2,

Cls’ls = W{17278} X 0;71, ~ (Z/QZ)S X 0;71,

2. The graph H., is as in Fig. 4. In this case, H., has no parallel edges,

1=(1,2,5,6,8)

I I =(1,2,4,5,8) = «

3 11 = (2,1,5,4,8)
IV = (2,1,6,5,8)

3 V=(21,5,6,8)

\% VI VII VIIT VI=(2,1,4,5,8)

4 6 3 3 6 4 VII = (1,2,5,4,8) = x4

VI = (1,2,6,5,8)

Fig. 4. Connected component of H

so let e(y, z) denote the unique directed edge of it from y to z. Now we give
a presentation of H, , by using Theorem 5.4. Let T}, be a maximal tree as in
Fig. 5.

To determine Ry(x), we have only to consider H'Z) for I = S ~ {s},
I 4 6 3 3 .6 4

IT I1I vV

3 3

3 3

\Y% VI VII VIII
4 6 3 3

Fig. 5. Maximal tree in Fig. 4

s € S since l(x) +2 =7 = |S| — 1. For example, if s = 4, then we ob-

tain H) from H., by deleting four vertices II, III, VI, VII and six edges
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e(1, 1), e(1L, I11), (111, IV), e(V, VI), e( VI, VII), e(VII, VIII). By similar argu-
ment, H) is nonempty for s = 3,4,6,7, as in Fig. 6, while this is empty for
s=1,2,5,8.

Thus we have Ry(x) = {e¢1, 2}, where

H5~(3D) HS~ (D)
4 4
QL me v
3
3
V —— VI VII—VIII  V VIII
46 6 4
HSN D HET
nm S POt St Ay
3 3
3 3
VI——VII v VI VII——VIII
33 4 6 3 3 6 4

Fig. 6. Subgraphs 7—[&2 of Fig. 4

c1 = e(1, VIINe(VIIL IV)e(IV, V)e(V, 1),

¢z = e(1, )e(I1, I e(ITL, IV)e(IV, VI e(VIIL VI e(VIL VI)e(VI, Ve(V, )

(note that in this case, every proper subset of S is of finite type). Now, by

Theorem 5.4, H, , is anti-isomorphic to

(E(Hew) [ {ee™ [ e € E(Hur)} U{e | e € T} U {cr, ca})
~ (e(L, VIIL), e(IV, V), e( VI, VIII)
(6.1)
| e(L VIIe(IV, V) = 1, e(VIL VI ™! = 1)

~ (e(IV, V) |) ~ Z.

35



Further, e(IV, V) in this presentation corresponds to h(q) € H, ., where
q=prve(IV, Vipy ™! = e(IL, I e(111, IV)e(IV, V)e(V, De(1, IT),
so H, , is the free group of rank one generated by h(q).

3. We describe the structure of GG, , by using Corollary 5.19. First, it follows
from Fig. 3 that each A € CO(x) is a union of some of {1}, {2}, {3,4}, {5}.
Then we have COZL () = {0, {3,4}}. Put Ay = {3,4}. Then we have x40 =
(1,2,5,4,8) = VIl and so A, = {0, Ao}. Let pa, = ppao(e0)™t € P(G), .

By Corollary 5.19 (i), G, is generated by h(q) and ¢(pa,) since H, . is

generated by h(q). Further, by that corollary, we have

9(Pa0)* = h(Pyao pag(Peso)

= h(pyao e(VIL VIIDe(VIIL IV)e(IV, )e(I1L, 1))

and this equals to 1; in fact, in the presentation (6.1), the path in the right
side of the above equality is equal to e(VII, VIII) and then vanishes. Similarly,

we have

9(Pas)h(0)g(Pag) ™
= h(Pag (oo ™ qPpa0))
= h(pa, (e(VIL, VI)e(VI, V)e(V, De(I, I1)
(11, TI) (111, IV)e(IV, V)e(V, VI)e(VI, VII)))
= h(e(I1, TI)e(IT1, IV)e(IV, VII)e(VIIL, VII)

Ce(VIL VD) e(VL V)e(V, IV)e(IV, H)e(IIL IT)
and this equals to h(q)~! by (6.1). Thus we have
Gro = (Ma).9(Pao) | 9(Pas)? = 1. 9(Fas)h(0)g(Fa,) ™" = ha)™") .
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This implies that {1, ¢(pa,)} forms a subgroup of G, , isomorphic to A, so
we have

Gow >~ Hpp XAy, =7 3 (Z[27),
where 1 € Z /27 acts on Z as multiplication by —1. Moreover, put a« = ¢g(pa, )

and b = ah(q). Then we have

Gyw = <a,b|a2: 1,6* = 1> ~ Aj.

4. We determine the structure of the Coxeter system (W(CI)[J;,]), Sz). Accord-

ing to the result of [14], or by direct computing, we have

I, = {7, h(q) -7}, where 7 = V2ar +ag = s7-ag.
Put 3 =7, 3" = h(q)-7. Then 3’ = /26 — 3, where

§ = ay 4 oy + 205 + 204 + 205 + 206 + 207 + V2 0s

is the null root of B.

This implies (3, 8") = —1, so (W(®})), 5,) is of type A;. Further, we have
9(Pa,) - B =", h(q)- B = ', and so Proposition 3.7 implies g(pa,) - 8’ = 3,
h(q)- 3 = 3. Then

a-B=pFa-g=p0-0=00-5=p

So we have Calc,x ~ ;(1 X ;(17 where one of the generators of right ;(1 (that is,
b) acts trivially on left Ay and the another (that is, @) acts as an involution of

the Coxeter graph of left A
Summarizing, we have C, . ~ (Z/2Z)> x (2(1 X ;(1)

In this example, GG, ;. is isomorphic to the semidirect product of H, , by A,,

and H,, forms a free group. But these properties may fail in general.
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Let (W,S) be as in Fig. 7 and let @ = (1,2,4,5,7,8). Then, similarly to

Fig. 7. Coxeter graph of another example

the previous example, it can be shown that

Wigeo =1, W(0g) = 1, Gop ~ 2%, H,, ~ (2Z)* C 2%

x]

Thus H, , is not a free group, and G, is not isomorphic to any semidi-

rect product of H, , by a group, since GG, , has no subgroup isomorphic to

Gow/H, o ~ (Z)2)".

At last of this section, we give some remarks on the preceding results men-
tioned in Introduction.

First, let z € S™, [2] = 5. Then by definition, Wi, gio is generated by all
wo(J) where J runs over the connected components of S satisfying |.J| = 1,
while obviously W(CI)[J;L,]) = 1. On the other hand, H., consists of only a single
point @ and so H,, = 1. This implies that A, = {A C COZ. (z) | 2* = z},
so A, is generated (as a group) by all A C A(x) such that x4 is a connected
component of [z] of finite type, |z4] > 2 and o,, = id,,. Hence by Corollary
5.19 (i), the well-known result on Zy (Ws) is in fact recovered.

Secondly, we also recover the result of Brink [2] by using our result; we check
that Zw(s) (s € 5) is the semidirect product of W(CI){LS} U {as}) by a group
isomorphic to the fundamental group of the odd Coxeter graph of (W, S). The
odd Coxeter graph 1'° is the subgraph of I' obtained by deleting all edges

labeled an even number or co.
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Now for @ = (s), we have

Wigiso % W(CI)[J;L,]) = (s) X W(CI){LS}) = W(CI){LS} U{as}).

On the other hand, we have G,, = H,, since A, = {0}. Further, H.,
is considered as a connected component of [°% containing s; in fact, each
y € V(Hn,) is identified with ¢ € S such that y = (¢), and then y is adjacent
to z = () if and only if (y,t) € B ~ B¥, or equivalently ¢ # ' and my, is
odd (cf. Fig. 1). Now we have Ry(x) = 0); in fact, if p € P(H),, satisfies the
condition for Rj(x), then p is a nontrivial cycle in I'7, but this is impossible
since I., is of finite type. This implies that ker h, is trivial, so H, , is anti-
isomorphic to P(H), . which is a free group, as required.

Finally, we deal with the case where (W,S) is even (that is, every mq
is even or oo) considered in the recent work by Bahls and Mihalik [1]. Our
approach is different from that in [1], but gives the same generators of Zy (W)
as [1] as follows.

In this case, H~, consists of only a single point  for any = € S™, by Fig. 1.
Now similarly to the case of Zw (Ws), G, is generated by all wq(.J) where
J runs over the connected components of [¢] of finite type satisfying |J| > 2
and oy = idy. Since (W, S) is even, a connected component J satisfies this
condition if and only if J = {s, s’} for some s,s" € S such that m; y is an even
number greater than 2. For such .J, we have wy(J) = (ss')"=+/% € Wia1, and so
Gy 1s contained in the center of €, ;. Note that (7, . is the direct products of
copies of Z /27 ~ A; and so is an even Coxeter group. These generators wo(.J)
along with the generators of the remaining factor Wi X W(CI)[J;E]) given by

the result in [14] coincide with the generators given in [1].
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