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Abstract

Let (W;S) be a Coxeter system (not necessarily of �nite rank), and put T =

S
w2W wSw�1. For any subset I of S, the centralizer ZW (WI) of the parabolic sub-

group WI is decomposed as hT \ ZW (WI)ioGI , where hT \ ZW (WI)i is a Coxeter

group, and GI is a complementary subgroup whose structure is described by using

a certain graph constructed from the information about �nite parabolic subgroups

only.
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1 Introduction

We analyze the structure of the centralizer of an arbitrary parabolic sub-

group in an arbitrary Coxeter group (not necessarily of �nite rank). Namely,

let (W;S) be a Coxeter system. A parabolic subgroup of W is the subgroup
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generated by a subset I of S, and denoted by WI . First we decompose the

centralizer ZW (WI) of WI in W in the following manner:

ZW (WI) = WI iso � (W (�?
I )oGI ) (= (WI iso �W (�?

I ))oGI ):

Here I iso is the set of all elements of I isolated in the Coxeter graph of

WI , hence WI iso forms an elementary abelian 2-group. The remaining factors

are de�ned in terms of the re
ection representation V and the root system

� = �+ t �� � V for W with simple system � = f�s j s 2 Sg (cf. Section

2). Let �?
I be the set of all roots orthogonal to �I = f�s j s 2 Ig. Then

W (�?
I ) is the subgroup of W generated by all re
ections with respect to the

roots in �?
I , which is also a Coxeter group due to a result by Deodhar [7] or

Dyer [8]. If � is well understood, the Coxeter generators of W (�?
I ) can be

determined using a result by Deodhar [7]. In a subsequent paper [14], we will

give a new method to give the Coxeter generators of W (�?
I ) concretely, even

if � is diÆcult to describe. Note that the factor hT \ ZW (WI)i in Abstract

coincides with WI iso �W (�?
I ).

In this paper, we focus on the �nal factor GI , consisting of all w 2 W such

that (1) w � �s = �s for all s 2 I iso, (2) w � �s = ��s for all s 2 I and

(3) w � (�?
I \ �+) = �?

I \ �+. We determine GI using a graph G, which we

call the transition graph in this paper. The construction of G is based on the

knowledge of Coxeter systems of �nite type only. Our result shows that GI is

a quotient of the fundamental group of G (which is a free group), and gives a

presentation of GI in terms of paths in G and automorphisms of a subgraph

H of G. Furthermore, it is shown that GI acts on W (�?
I ) as automorphisms

of the Coxeter graph of W (�?
I ).

In some cases, the structure of ZW (WI) has been known. If I = S, then

it is well known that ZW (WI), namely the center of W , is generated by the
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longest elements w0(J) of WJ where J runs over all connected components of

S of �nite type such that w0(J) acts on �J as multiplication by �1, and is

an elementary abelian 2-group. If I consists of a single element s, Brink [2]

showed that ZW (WI) (= ZW (s)) is the semidirect product of a certain Cox-

eter group by a free group. Our results generalize these cases. Recently, we

learned that Bahls and Mihalik [1] described ZW (WI) if (W;S) is even (that

is, every product ss0 of two generators has even or in�nite order) by a di�erent

approach.

There are some results on related topics; the normalizers and commen-

surators of parabolic subgroups in Coxeter groups have been examined by

Brink and Howlett [3] and Paris [16] respectively. Further, the centralizers of

parabolic subgroups in Artin groups of certain types have also been described

by Paris [15].

This paper is organized as follows. In Section 2, we recall some terminology

and basic properties of Coxeter groups and groupoids, which we use in the

analysis of GI , and show some lemmas used in the following sections. In Sec-

tion 3, we show the decomposition of ZW (WI) as described above, together

with some remarks on the �rst two factors. Note that WI iso , W (�?
I ) and GI

are denoted by W[x]iso , W (�?
[x]) and Gx;x respectively in the text, by taking

x as in the previous paragraph. In Section 4, we de�ne the transition graph

G and its subgraph H. In Section 5, we examine the group GI . To do this,

we de�ne a groupoid anti-homomorphism g from the fundamental groupoid

of G to a certain subgroupoid G0 of G having the same vertex groups as G.

Then we show that g is surjective, and give a generating set of the kernel

of g as a normal subgroupoid, in terms of paths of G and automorphisms of

H. This yields a presentation of GI . Finally, Section 6 deals with an example

in full; we compute ZW (WI) for an aÆne Coxeter group using the results of
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previous sections. Moreover, we also recover the preceding results on special

cases mentioned above.

2 Background material

A group W is called a Coxeter group (or a pair (W;S) is called a Coxeter

system) if W is presented as

W = hS j (ss0)ms;s0 = 1 (s; s0 2 S;ms;s0 <1) i

for certain (ms;s0)s;s02S such that ms;s = 1 for all s 2 S and ms;s0 = ms0;s 2
f2; 3; : : : g t f1g for all s; s0 2 S, s 6= s0 (cf. [11]). The Coxeter graph � of

(W;S) is the simple, undirected graph on S which has an edge between s and

s0 labeled ms;s0 if and only if ms;s0 > 3 (these labels are usually omitted for the

case ms;s0 = 3). For I � S, a \connected component of I" means the vertex

set of a connected component of �I , where �I is the restriction of � to I.

Let V be a real vector space with a symmetric bilinear form h ; i, and let

� = f�s j s 2 Sg � V . Then, as in [10], � is called a root basis if

h�s; �s0i = � cos(�=ms;s0) if ms;s0 <1; h�s; �s0i 6 �1 if ms;s0 =1

and 0 2 V cannot be written as a nontrivial positive linear combination of

elements of � (note that S is assumed in [10] to be a �nite set, but the

following properties also hold for the case jSj =1). For any root basis �, an

action of W on V is well de�ned by s � v = v � 2 h�s; vi�s, s 2 S, v 2 V .

Note that this action preserves the bilinear form. Let � = W � �. Then we

have � = �+ [ ��, �+ \ �� = ;, where �+ is the set of all 
 2 � which is

written as a positive linear combination of elements of � and �� = ��+. � is
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called a root system of (W;S), and every element of �+, �� is called a positive,

negative root respectively. Any element of � is called a simple root. For 	 � �,

de�ne 	� = 	 \ ��. For a root 
, we write 
 > 0, 
 < 0 instead of 
 2 �+,


 2 �� respectively. Further, for w 2 W , let �+
w = f
 2 �+ j w � 
 < 0g.

Then it is shown in [10] that j�+
w j = `(w), where `(w), the length of w, is the

minimal number k such that w = s1s2 � � � sk for some si 2 S. This implies the

following:

Lemma 2.1. (i) Let w1; w2 2 W . Then

`(w1w2) = `(w1) + `(w2)� 2
�����+

w1
\ �+

w�1
2

���� :

Hence `(w1w2) = `(w1) + `(w2) if and only if �+
w1
\ �+

w�1
2

= ;.
(ii) If �+

w1
= �+

w2
, then w1 = w2.

Proof. For "1; "2; "3 2 f+;�g, let �"1"2"3 be the set of all 
 2 �"3 such that

w2 � 
 2 �"2 , w1w2 � 
 2 �"1 . Then we have

�+
w1w2

= ��++ t ���+; �
+
w1

= w2 � (��++ t ��+�); �
+
w2

= �+�+ t ���+;

so `(w1) + `(w2)� `(w1w2) = j��+�j+ j�+�+j. Further, we have

��+� = w�1
2 � (�+

w1
\ �+

w�1
2
); �+�+ = ���+�;

so we have `(w1) + `(w2) � `(w1w2) = 2
�����+

w1
\ �+

w�1
2

����, as required. Hence (i)
holds. For (ii), we have `(w1w2

�1) = 0 by (i), so w1w2
�1 = 1.

As shown in [11], for any Coxeter system (W;S), there are a re
ection

representation space V and a root basis � such that � is a basis of V (as a

vector space) and h�s; �s0i = �1 whenever ms;s0 = 1. In this case, the root
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system � is called standard. From now on, � is assumed to be standard unless

otherwise speci�ed.

For v =
P

s2S cs�s 2 V , write [�s]v = cs and let supp v be the set of all

s 2 S such that cs 6= 0.

For any 
 = w � �s 2 �, the re
ection s
 2 W about 
 is de�ned as

s
 = wsw�1 and acts on V by s
 � v = v � 2 hv; 
i 
. Then:

Proposition 2.2 (cf. [11]). (i) Let w 2 W , 
 2 �+. Then `(ws
) > `(w) if

w � 
 > 0, and `(ws
) < `(w) otherwise.

(ii) For 
; 
0 2 � and w 2 W , ws
w
�1 = s
0 if and only if w � 
 = �
0.

Further, there are two useful theorems about re
ections: the former is The-

orem 5.4 of [6], and the latter is a special case of Theorem 1.20 of [18].

Theorem 2.3. If w 2 W , w2 = 1, then w can be written as a product of re-


ections about pairwise orthogonal positive roots (so these re
ections commute

with each other). Hence w � 
 = �
 for some 
 2 � whenever w2 = 1, w 6= 1.

Theorem 2.4. Suppose that jW j < 1, w 2 W and w �xes some roots


1; : : : ; 
k of W . Then w can be written as a product of re
ections which also

�x all 
i.

For 	 � �, let W (	) be the subgroup of W generated by all s
, 
 2 	

(such subgroup is called a re
ection subgroup) and let 	 =W (	) �	. Then:

Theorem 2.5 ([7]). W (	) is a Coxeter group with (not necessarily standard)

root system 	 and length function è such that è(w) = ����+
w \	

���.

Further, let W	 = fw 2 W j �+
w \ 	 = ;g. Then Theorem 4.1 of [12],

stated only for Weyl groups, is improved for arbitrary Coxeter groups by
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similar proof:

Theorem 2.6. Each w 2 W is written uniquely as w = w	w	, w
	 2 W	,

w	 2 W (	). Further, w	 is the unique element of minimal length in wW (	).

In particular, let �I = f�s j s 2 Ig for each I � S. Then W (�I), W�I

are denoted by WI , W I respectively. WI is called a parabolic subgroup, and

(WI ; I) forms a Coxeter system with root system �I =WI ��I (this is standard

whenever � is), root basis �I and length function ` jWI
. Note that W is the

direct product of all WI where I runs over all connected components of S; so

(W;S) is called irreducible if S is connected. Now we give a simple proof of

the following well-known facts:

Proposition 2.7. (i) �I = f
 2 � j supp 
 � Ig for all I � S.

(ii) supp 
 is connected for all 
 2 �.

Proof. Let 
 2 � such that supp 
 � I. Put w = (s
)I . Then w � �s > 0 for

all s 2 I, while w � �s = �s� 2 h
; �si 
 > 0 for all s 2 S r I since s 62 supp 
.

These yield �+
w = ; and so w = 1, therefore s
 2 WI . Then s
 � 
 0 = �
0

for some 
0 2 �I by Theorem 2.3. This implies 
 = �
0 and so 
 2 �I .

The converse is obvious, so (i) holds. Further, (i) implies 
 2 �supp
, so (ii)

follows.

Note that �+
wI \ �+

wI
�1 = ; for any w 2 W , so `(w) = `(wI) + `(wI) by

Lemma 2.1 (i). Further, we have the following:

Proposition 2.8. �+
wI

= �+
w \ �+

I for w 2 W , I � S.
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Proof. �+
wI
� �+

I by Proposition 2.7 (i). Further, note that wI � 
 is positive,

negative whenever 
 2 �+
I , 
 2 ��

I respectively. Then for 
 2 �+
I , w

IwI �
 < 0

if and only if wI � 
 < 0. Hence our claim holds.

For I � S, we say that I is of �nite type if jWI j < 1, or equivalently

j�I j <1. For such I, let w0(I) denote the longest element of WI ; this satis�es

�+
w0(I)

= �+
I . Moreover, it is known (cf. [18]) that w0(I) � �I = ��I ; so

we can de�ne a permutation �I : I ! I by w0(I) � �s = ���I(s) for any

s 2 I. Since w0(I) is involutive and preserves the bilinear form, this �I is

an involutive graph automorphism of �I . Note that for I � S of �nite type,

w0(I) = w0(I1) � � �w0(Ik) and �Ii = �I jIi for all i, where I1; : : : ; Ik are the

connected components of I. Now a certain numbering on S and the action of

�S for each �nite irreducible Coxeter system (cf. [11] for the classi�cation) are

listed in Fig. 1; each �S(si) is denoted there by si, and si is omitted if si = si.

Now we have the following proposition, which is a slight improvement of a

result proved by Deodhar in the proof of [6], Proposition 4.2:

Proposition 2.9. Let I ( J � S and suppose that J is connected and not

of �nite type. Then j�J r �I j =1. In addition, if jJ j <1, then there exist

in�nitely many 
 2 �+ such that supp 
 = J .

Proof. First, suppose jJ j < 1, so the power set of J is also �nite. Since

j�J j = 1, there is some J 0 � J such that j	J 0j = 1, where 	J 0 = f
 2 � j
supp 
 = J 0g. Take such J 0 as large as possible with respect to inclusion, and

assume J 0 6= J . Then there is some s 2 J r J 0 adjacent to an element of J 0

since J is connected. Now the action of s maps 	J 0 injectively into 	J 0[fsg,

while
���	J 0[fsg

��� <1 by the choice of J 0. But this is contradiction, so we have
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J 0 = J , as required.

On the other hand, suppose jJ j = 1 and let s 2 J r I. Take a maximal

tree on �J . For t 2 J , let s = s0; s1; : : : ; sk = t be the unique reduced path

in this maximal tree from s to t, and let 
t = sksk�1 � � � s1 � �s. Then we have

supp 
t = fs; s1; : : : ; skg and so all 
t are distinct and satisfy 
t 2 �J r �I .

Hence we have j�J r �I j =1.

In the rest of this section, we recall the terminology on groupoids (cf. [4], [9]).

A groupoid is a small category such that every morphism is invertible; in other

words, a family G = fGx;ygx;y2V (G) of sets with index set V (G) � V (G) for

which a partial multiplication is de�ned and satis�es associativity, existence

of identities and inverses. We often identify such G with the (disjoint) union

of all Gx;y, x; y 2 V (G). The partial multiplication w1w2 2 Gx;z is de�ned for

w1 2 Gx;y, w2 2 Gy;z . The identity exists uniquely in each Gx;x. For w 2 Gx;y,

its inverse w�1 is unique and belongs to Gy;x.

A subgroupoidH of G is a subcategory of G which forms a groupoid. Such H

is called full if Hi;j = Gi;j for all i; j 2 V (H), called wide if V (H) = V (G), and

called normal if H is wide and gxg�1 2 Hj;j for all x 2 Hi;i, g 2 Gj;i. Further,

any full subgroupoid H � G is called the restriction of G to V (H). Then for a

groupoid G, the restriction of G to V 0, where V 0 is one of the maximal subsets

of V (G) such that Gx;y 6= ; for all x; y 2 V 0, is called a connected component

of G. G is called connected if G consists of only one connected component.

The intersection of subgroupoids H�, � 2 � of G is de�ned naturally, and

also forms a subgroupoid of G. This becomes normal in G whenever all H�

are. Further, for any subset X � G, the subgroupoid of G generated by X

is the intersection of all subgroupoids of G containing X (or equivalently,
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the smallest subgroupoid of G containing X). The normal subgroupoid of G

generated by X is de�ned similarly.

A groupoid homomorphismG! G0 is a covariant functor of groupoids G, G0

considered as categories, while a groupoid anti-homomorphism is similar but it

is contravariant instead of covariant. Note that for a groupoid homomorphism

f : G ! G0, its image f(G) may not be a subgroupoid of G0, but it forms a

subgroupoid whenever f maps V (G) injectively to V (G0). On the other hand,

its kernel kerf , the inverse image of identities of G0, always forms a normal

subgroupoid of G.

For a groupoid G and its normal subgroupoid N , the quotient groupoidG=N

is de�ned as follows. Let V (G=N) be the set of all equivalence classes [x] in

V (G), where x is equivalent to y if and only if Nx;y 6= ;. Further, let [w] be
the equivalence class of w 2 G in G, where w is equivalent to w0 if and only if

w = uw0v for some u; v 2 N . Then de�ne

(G=N)[x];[y] = f[w] j w 2 Gx0;y0 for some x0 2 [x] ; y0 2 [y]g:

Now for [w1] 2 (G=N)[x];[y] and [w2] 2 (G=N)[y];[z], de�ne [w1] [w2] = [w1
0w2

0]

where w1
0 2 [w1], w2

0 2 [w2] and w1
0w2

0 2 G is de�ned. Then this multiplica-

tion makes G=N a groupoid.

The groupoid version of \The First Isomorphism Theorem" is as follows:

Theorem 2.10 (cf. [4], [9]). Let f : G ! G0 be a groupoid homomor-

phism such that f is injective on V (G). Then f induces an isomorphism

f : G= ker f ! f(G).

One of the important examples of groupoids is the fundamental groupoid

of a graph, which is used in the following sections. Let G be any undirected

graph with vertex set V (G). We de�ne an equivalence relation � on directed
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paths of G; � is generated by the relation

e1 � � � ek�1eke�1k ek+1 � � � en � e1 � � � ek�1ek+1 � � � en;

where each ei is a directed edge (that is, a directed path of length one) and

e�1k is the opposite edge of ek. This relation � is called the homotopy equiv-

alence. Then the concatenation of paths induces a partial multiplication of

homotopy classes, and P(G) = fP(G)x;ygx;y2V (G) forms a groupoid with this

multiplication, where P(G)x;y is the set of all homotopy classes of paths from

x to y. P(G) is called the fundamental groupoid of G.

3 Decomposition into three factors

In this section, we show that the centralizer of WI admits a decomposition

W[x]iso � (W (�?
[x]) o Gx;x) as described in Introduction. This is done in two

steps; Corollary 3.2 and Theorem 3.5. Further, we examine the �rst two fac-

tors W[x]iso and W (�?
[x]). The remaining factor Gx;x is described in Section 5.

We prepare some notations. In order to deal with the case jIj =1 as well,

we �x a family 
 of index sets such that for each I � S, there is a unique

� 2 
 having the same cardinality with I. Then let S(�) be the set of all

injective maps ("�-tuples" with no repetitions) x : � ! S for each � 2 
,

and let S(�) be the union of all S(�). For x 2 S(�), write x� = x(�) for any

� 2 �, and let �(x) = �, `(x) = j�j and [x] = fx� j � 2 �(x)g. Note that
�(x) = �(y) whenever `(x) = `(y).

If `(x) < 1, then we take �(x) = f1; 2; : : : ; `(x)g. So we write x =

(x1; x2; : : : ; x`(x)), and [x] = fx1; x2; : : : ; x`(x)g in this case.

For I � S, let I iso be the set of all s 2 I which commutes with every s0 2 I,

12



or equivalently, the set of all isolated vertices of �I . Let x; y 2 S(�). Then

de�ne

Cx;y =

8>>>><
>>>>:
fw 2 W j �x� = �w � �y� for all � 2 �(x)g if `(x) = `(y);

; otherwise:

Note that the condition �x� = �w � �y� is equivalent to x� = wy�w
�1, so the

centralizer of each WI occurs as Cx;x by taking x 2 S(�) such that [x] = I.

Further, de�ne C 0
x;y = Cx;y \W [y]iso and C 00

x;y = Cx;y \W [y]; that is,

C 0
x;y = fw 2 Cx;y j �x� = w � �y� if y� 2 [y]isog;

C 00
x;y = fw 2 W j �x� = w � �y� for all � 2 �(x)g

whenever `(x) = `(y).

Proposition 3.1. C = fCx;ygx;y, C 0 = fC 0
x;ygx;y and C 00 = fC 00

x;ygx;y are

groupoids on S(�).

Proof. By de�nition, the claim is obvious for C and C 00.

Let w1 2 C 0
x;y, w2 2 C 0

y;z and z� 2 [z]iso. Since w2 preserves the bilinear

form, we have y� 2 [y]iso and so �x� = w1w2 � �z�. This implies w1w2 2 C 0
x;z.

Similarly, we have w1
�1 2 C 0

y;x; hence C
0 is also a groupoid.

Corollary 3.2. Cx;x = W[x]iso � C 0
x;x for every x 2 S(�).

Proof. Note that C 0
x;x forms a group by this proposition; then our claim is

deduced by W[x]iso � Z(Cx;x) and C 0
x;x = Cx;x \W [x]iso .

Note that W[x]iso is an elementary abelian 2-group generated by [x]iso.

For I � S, let �?
I denote the set of all roots 
 2 � which are orthogonal to
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every �s 2 �I . Then the following lemma follows immediately from de�nition

of Cx;y:

Lemma 3.3. �?
[x] = w � �?

[y] for any x; y 2 S(�), w 2 Cx;y.

Note that for any x 2 S(�), the re
ection subgroup W (�?
[x]) (cf. Section

2) is a subgroup of C 00
x;x, so W (�?

[x]) � �?
[x] = �?

[x] by this lemma. Now de�ne

Gx;y = C 0
x;y \W

�?[y] for x; y 2 S(�); that is,

Gx;y = fw 2 C 0
x;y j �+

w \ �?
[y] = ;g:

Lemma 3.4. Gx;y = fw 2 C 0
x;y j (�?

[x])
+ = w � (�?

[y])
+g for any x; y 2 S(�).

Hence G = fGx;ygx;y is a wide subgroupoid of C 0
x;x.

Proof. Let w 2 Gx;y. Then �?
[x] = w � �?

[y] by Lemma 3.3, so w � (�?
[y])

+ �
(�?

[x])
+ by de�nition. This impliesw�(�?

[y])
� � (�?

[x])
�. Hence we have (�?

[x])
� =

w � (�?
[y])

� respectively. The converse is clear.

Theorem 3.5. C 0
x;x = W (�?

[x])oGx;x for every x 2 S(�).

Proof. By Lemma 3.3, we have ws
w�1 = sw�
 2 W (�?
[x]) for all w 2 C 0

x;x,


 2 �?
[x]; thus W (�?

[x]) is normal in C 0
x;x, while Gx;x is a subgroup of C 0

x;x

by Lemma 3.4. Further, Theorem 2.6 implies that each w 2 C 0
x;x is written

uniquely as w = w0w00, w0 2 Gx;x, w00 2 W (�?
[x]). Hence our claim holds.

In the rest of this section, we examine the factor W (�?
[x]) and the action

of Gx;x on W (�?
[x]). By Theorem 2.5, W (�?

[x]) is a Coxeter group with root

system �?
[x] (note thatW (�?

[x])��?
[x] = �?

[x]). Moreover, its Coxeter generator is

determined by the result of [7]. Namely, let e�x denote the set of all 
 2 (�?
[x])

+
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which cannot be written as a positive linear combination of other elements of

(�?
[x])

+, and let eSx = fs
 j 
 2 e�xg. Then:

Proposition 3.6. (W (�?
[x]);

eSx) is a Coxeter system with (not necessarily

standard) root system �?
[x] and length function èx such that èx(w) =

����+
w \ �?

[x]

���.

According to [14], the set e�x can be determined concretely (note that e�x

can become in�nite even for the case jSj <1; cf. [14] for detail), even if the

root system of original (W;S) is not well understood. Moreover, we have the

following:

Proposition 3.7. Each w 2 Gx;x acts on W (�?
[x]) as an automorphism of

the Coxeter graph e�x of (W (�?
[x]);

eSx). Moreover, this yields a group homo-

morphism Gx;x ! Aut e�x. In particular, the semidirect product W (�?
[x])oGx;x

becomes direct whenever Aut e�x = 1.

Proof. First, we show w � 
 2 e�x for all w 2 Gx;x, 
 2 e�x. We have w � 
 2
(�?

[x])
+ since 
 2 (�?

[x])
+. Assume w � 
 62 e�x. Then w � 
 can be written as

a positive linear combination of 
0 2 (�?
[x])

+, 
0 6= w � 
. This implies that


 is also written as a positive linear combination of w�1 � 
0, and we have

w�1 � 
0 2 (�?
[x])

+, w�1 � 
0 6= 
. Thus 
 62 e�x, but this is contradiction. Hence

w � 
 2 e�x.

Let w 2 Gx;x. Then for any 
 2 e�x, we have ws
w
�1 = sw�
 and w �


 2 e�x as above. This implies that w induces a permutation �w : s
 7!
ws
w

�1 on eSx. Further, �w�w0 = �ww0 and �1 = ideSx by de�nition, while

�w(s
)�w(s
0) = ws
s
0w
�1 and s
s
0 have the same order. Hence w 7! �w is

a group homomorphism from Gx;x to Aut e�x.
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4 Transition graph

In this section, we de�ne an undirected graph G on S(�), which we call the

transition graph. This graph is constructed from the information about actions

of the longest elements of �nite parabolic subgroups only. In later sections, G
and its subgraph H are used for describing the structure of the centralizers.

In what follows, it is important that we work with ordered tuples x 2 S(�).

Similar arguments appeared in [3] or [16], but they dealt with subsets of S

only, in which the order was not relevant.

For I; J � S, let I�J denote the union of all connected components of I [J
containing some s 2 J . We write I�s as a shorthand for I�fsg. Further, if

x 2 S(�), then we write x�J instead of [x]�J . Now de�ne

B = f(x; s) j x 2 S(�); s 2 S r [x] ; x�s is of �nite typeg:

For (x; s) 2 B, put

ws
x = w0(x�s)w0(x�s r fsg):

Then, since w0(I) � �I = ��I for any I � S of �nite type, there is a unique

y 2 S(�) such that `(y) = `(x) and �y� = ws
x ��x� for all � 2 �(x). Now de�ne

'(x; s) = ('v(x; s); 'l(x; s)), where

'v(x; s) = y; 'l(x; s) = �x�s(s)

(cf. Section 2 for de�nition of �). Then:

Remark 4.1. [x] t fsg = ['v(x; s)] t f'l(x; s)g for any (x; s) 2 B.

Lemma 4.2. If I � J � S and J is of �nite type, then (w0(J)w0(I))
�1 =

w0(J)w0(�J(I)) and �+
w0(J)w0(I)

= �+
J r �+

I .

16



Proof. We show �+
w0(J)w0(I)

= �+
w0(�J(I))w0(J)

; then we have w0(J)w0(I) =

w0(�J(I))w0(J) and so (w0(J)w0(I))�1 = w0(J)w0(�J (I)) since the longest

elements are involutive.

Obviously, we have �+
w0(J)w0(I)

� �+
J , �

+
w0(�J(I))w0(J)

� �+
J . Let 
 2 �+

J .

Then w0(J)w0(I) � 
 < 0 if and only if w0(I) � 
 > 0 (since w0(I) � 
 2 �J),

or equivalently 
 62 �+
I . Thus we have �+

w0(J)w0(I)
= �+

J r �+
I . Similarly,

w0(�J(I))w0(J) � 
 < 0 if and only if w0(J) � 
 62 ��
�J (I)

(since w0(J) � 
 <

0), or equivalently 
 62 �+
I ; thus �

+
w0(�J(I))w0(J)

= �+
J r �+

I . Hence we have

�+
w0(J)w0(I)

= �+
w0(�J(I))w0(J)

, as required.

Corollary 4.3. ' is an involution on B. Further, w'l(x;s)
'v(x;s)

= (ws
x)
�1 for any

(x; s) 2 B.

Proof. For (x; s) 2 B, we have

x�s = �x�s(x�s r fsg) t f'l(x; s)g;

['v(x; s)] = �x�s(x�s r fsg) t ([x]r x�s)

by de�nition of '. Then 'v(x; s)�'l(x;s) = x�s and so '(x; s) 2 B. Thus '
maps B to itself. Further, 'l('v(x; s); 'l(x; s)) = s since �x�s is involutive.

Finally, the previous lemma yields

(ws
x)
�1 = w0(x�s)w0(�x�s(x�s r fsg))

= w0('v(x; s)�'l(x;s))w0('v(x; s)�'l(x;s) r f'l(x; s)g) = w
'l(x;s)
'v(x;s)

;

which implies 'v('v(x; s); 'l(x; s)) = x by de�nition.

Let

B' = f(x; s) 2 B j '(x; s) = (x; s)g:

17



Then by Remark 4.1, (x; s) 2 B' if and only if (x; s) 2 B and 'v(x; s) = x.

Now let fH be the directed graph on S(�) having an edge esx from x to 'v(x; s)

with label s for each (x; s) 2 B r B'. Then the above corollary implies that

for each edge esx, the edge e
'l(x;s)
'v(x;s)

, denoted by (esx)
�1, exists and goes from

'v(x; s) to x. Note that ((esx)
�1)�1 = esx. Then let H be the undirected graph

on S(�) obtained from fH by identifying each edge esx with its inverse.

When we draw the picture of H, an edge, obtained from esx and its inverse, is

represented as an edge with labels s close to the vertex x and 'l(x; s) close to

'v(x; s); moreover, for the case s = 'l(x; s), the repeated s's may be replaced

by a single s. See Fig. 2 below for example.

For x 2 S(�), de�ne

CO(x) = fA � �(x) j xA is a union of connected components of [x]g;

CO>1
<1(x) = fA 2 CO(x) j xA is of �nite type; xA

iso = ;g;

where

xA = fx� j � 2 Ag:

These families form elementary abelian 2-groups with symmetric di�erence

of sets as multiplication. This multiplication of A and A0 is written as AA0.

Further, for A 2 CO>1
<1(x), let x

A be the unique element of S(�) satisfying

`(xA) = `(x), (xA)� = �xA(x�) for all � 2 A and (xA)� = x� for all � 2
�(x)rA. Then we have (xA)� = w0(xA)x�w0(xA) for all � 2 �(x) since xA is

a union of connected components of [x].

Lemma 4.4. Let x 2 S(�) and A;A0 2 CO>1
<1(x). Then:

(i) CO(xA) = CO(x) and CO>1
<1(x

A) = CO>1
<1(x).

(ii) (xA)A
0

= xAA
0

.

18



Proof. By the above remark, we have m(xA)�;(xA)� = mx�;x� for all �; � 2
�(x); hence (i) holds. Further, (ii) follows immediately from the fact that

AA0 2 CO>1
<1(x) and �xA(x�) = �xA0 (x�) for any � 2 A \A0.

For any graph G0 with vertex set V (G0) and x 2 V (G0), let G0�x denote the

connected component of G0 containing x. Then for x 2 S(�), let

Ax = fA 2 CO>1
<1(x) j xA 2 V (H�x)g:

Now let eG be the graph obtained from fH by adding the edge eAx , for each

x 2 S(�) and A 2 Ax, from x to xA with label A. Since AxA = Ax for

any A 2 Ax (as checked in Lemma 5.15 of the next section), the edge eAxA,

denoted by (eAx )
�1, exists and goes from xA to x for any edge eAx . Note that

((eAx )
�1)�1 = eAx . Then let G be the undirected graph obtained from eG by

identifying each edge with its inverse, so G contains H as a subgraph. Note

that V (G�x) = V (H�x). Further, as showed in the next section, the structure

of the factor Gx;x is indeed deduced from only the connected component G�x;
so we need to compute only the component G�x, not the whole of G.

Example 4.5. Let (W;S) be a �nite Coxeter system of type B5 with num-

bering on S in Fig. 1, and let x = (s1; s3; s4). Then G�x is as in Fig. 2, where

x0 = (s1; s4; s3), y = (s4; s1; s2) and y
0 = (s4; s2; s1). (For simplicity, every loop

e;z is omitted in this �gure.)

For example, (x; s5) 2 B and '(x; s5) = (x0; s5); in fact, x�s5 = fs3; s4; s5g
is of �nite type, and we have

�fs3;s4;s5g�fs3;s4g(s3) = �fs3;s4;s5g(s4) = s4;

�fs3;s4;s5g�fs3;s4g(s4) = �fs3;s4;s5g(s3) = s3

19



y x x0 y0
s3 s2 s5 s2 s3

f2; 3g

f2; 3g

Fig. 2. Transition graph for Example 4.5

(cf. Fig. 1). On the other hand, we have CO>1
<1(y) = f;; f2; 3gg, and yf2;3g =

fs1; s2g, �fs1;s2g(s1) = s2, �fs1;s2g(s2) = s1. Then yf2;3g = y0. Other edges are

obtained similarly (note that (y; s5); (y0; s5) 2 B').

5 The factor Gx;x

In this section, the remaining factor Gx;x of the decomposition is examined.

We give a presentation of this group by using the graph G de�ned in Section

4.

The main results of this section, which we prove later, are as follows. First,

we introduce a subgroupoid H of G; de�ne

H = G \ C 00;

so H is a wide subgroupoid of G and C 00. Then:

Proposition 5.1. H is a normal subgroupoid of G.

Further, let G0 be the wide subgroupoid of G such that G0
x;y = Gx;y if

Hx;y 6= ;, G0
x;y = ; otherwise. Then H � G0 and G0

x;x = Gx;x for all x 2 S(�),

so we treat G0 instead of G in this section.

For any undirected graph G 0, let P(G0) (P(G0)x;y) denote the set of all di-

rected paths of G0 (from x to y, respectively), and let P(G0) denote the funda-
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mental groupoid of G 0 (cf. Section 2). The homotopy class of p 2 P(G0) is de-
noted by [p]. Secondly, we de�ne groupoid anti-homomorphisms g : P(G)! G0

and h : P(H)! H which is the restriction of g, and show that these are both

surjective. Recall that ws
x = w0(x�s)w0(x�s r fsg) for (x; s) 2 B and let

wA
x = w0(xA)

for each A 2 CO>1
<1(x). Then:

Theorem 5.2. (i) ws
x 2 H'v(x;s);x for any (x; s) 2 B r B'.

(ii) wA
x 2 GxA;x for any A 2 CO>1

<1(x).

(iii) There exists a unique groupoid anti-homomorphism h from P(H) to H

which sends each [esx] to ws
x. Moreover, this map is identity on S(�) and sur-

jective.

(iv) There exists a unique groupoid anti-homomorphism g from P(G) to G0

which is an extension of h and sends each
h
eAx
i
to wA

x . Moreover, this map is

identity on S(�) and surjective.

By this theorem, G0, H are anti-isomorphic to the quotients P(G)= ker g,
P(H)= kerh respectively. In particular, let gx, hx be the restriction of g,

h to P(G�x), P(H�x) respectively. Then Gx;x, Hx;x are anti-isomorphic to

(P(G�x)= ker gx)x;x, (P(H�x)= kerhx)x;x respectively. So thirdly, we describe

the structure of ker gx, kerhx. For I � S, let H(I) be the `restriction' of H to

I; that is, the subgraph of H consisting of all y 2 S(�) such that [y] � I and

all esy such that [y][ fsg � I. Note that (esy)
�1 2 H(I) if and only if esy 2 H(I).

Then:

Theorem 5.3. (i) kerhx is generated as a normal subgroupoid by all [p],

p 2 R1(x), where R1(x) is the set of all nontrivial simple closed reduced paths
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p = es1y1 � � � esnyn 2 P(H�x) contained in some H(I) such that jI r [y1]j = 2 and

I�fs1;s2g is of �nite type.

(ii) ker gx is generated as a normal subgroupoid by all [p], p 2 R1(x)[R2(x)[
R3(x), where R2(x) consists of all paths eAy e

A0

yA(e
AA0

y )�1, y 2 V (G�x), A;A0 2
Ax, and R3(x) consists of all paths esye

A
'v(y;s)

(esyA)
�1(eAy )

�1, y 2 V (G�x), s 2 S,

A 2 Ax.

Now certain presentations of (P(G�x)= ker gx)x;x and (P(H�x)= kerhx)x;x,

therefore of Gx;x andHx;x, are obtained from these results. Let Tx be a maximal

tree in H�x (this is also a maximal tree in G�x). For each y 2 V (G�x), let py
be the unique reduced path in Tx from x to y. Moreover, let E(G�x), E(H�x)

denote the set of all directed edges of G�x, H�x respectively; so every element

of Ri(x), i = 1; 2; 3 can be regarded as a word on E(G�x). Then Theorem 5.17

of [5] yields the following:

Theorem 5.4. (i) (P(H�x)= kerhx)x;x has the following presentation:

D
E(H�x) j fee�1 j e 2 E(H�x)g [ fe j e 2 Txg [R1(x)

E
:

(ii) (P(G�x)= ker gx)x;x has the following presentation:

D
E(G�x) j fee�1 j e 2 E(G�x)g [ fe j e 2 Txg [ R1(x) [R2(x) [R3(x)

E
:

Moreover, in each presentation, a generator e 2 E(G�x) corresponds to the

coset containing [pyepz�1] where e is an edge from y to z.

Finally, in order to simplify the above presentation of Gx;x, a certain smaller

generating set of Gx;x and their multiplication are described in Corollary 5.19.

From now on, we start proving the above results.

Lemma 5.5. If Gx;y 6= ;, then CO(x) = CO(y) and CO>1
<1(x) = CO>1

<1(y).
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Proof. Take any w 2 Gx;y. For �; � 2 �(x), we have

D
�x�; �x�

E
=
D
�w � �y� ;�w � �y�

E
= �

D
�y� ; �y�

E
;

and so
D
�x� ; �x�

E
=
D
�y� ; �y�

E
since they have the same signature. Thus we

have mx�;x� = my�;y� and so our claim holds.

Remark 5.6. By this proof, each w 2 Cx;y induces a graph isomorphism

y� 7! x� from �[y] to �[x].

Owing to this lemma, we de�ne a groupoid CO>1
<1 on the set of equivalence

classes in S(�) by

(CO>1
<1)x;y = CO>1

<1(x) if x = y; (CO>1
<1)x;y = ; otherwise;

where x is de�ned to be equivalent to y if and only if Gx;y 6= ;.

Proposition 5.7. The map G ! CO>1
<1, Gx;y 3 w 7! Aw 2 (CO>1

<1)x is a

groupoid homomorphism, where

Aw = f� 2 �(x) j �x� = �w � �y�g:

Proof. Let w 2 Gx;y. If y� is adjacent to y� (or equivalently
D
�y� ; �y�

E
< 0),

then � 2 Aw if and only if � 2 Aw since
D
w � �y� ; w � �y�

E
=
D
�y� ; �y�

E
and

D
�x� ; �x�

E
6 0. This implies Aw 2 CO(y).

If y� 2 yAw

iso, then we have y� 2 [y]iso and �x� = �w � �y� , but this is

impossible since w 2 C 0
x;y. So yAw

iso = ;. Further, we have �+
yAw

� �+
w, so yAw

is of �nite type since
����+

yAw

��� 6 j�+
w j = `(w) <1. Thus we haveAw 2 CO>1

<1(y)

and so this map is well-de�ned.

The rest of our claim, namely Aww0 = AwAw0 for w 2 Gx;y, w0 2 Gy;z and

Aw�1 = Aw (= Aw
�1), immediately follows from de�nition.

23



Note that H = G \ C 00 is the kernel of this homomorphism, so Proposition

5.1 follows.

Lemma 5.8. Let x 2 S(�), I � S and suppose w 2 W[x][I , w ��[x] � � and

�I � �+
w . Then [x]\ I = ;, x�I is of �nite type and w = w0(x�I)w0(x�I r I).

Proof. [x]\ I = ; and w 2 C 00
y;x for some y 2 S(�) by the hypothesis. Now we

show �+
w = �+

x�I
r �+

x�IrI
.

Since w 2 W[x][I, we have �+
w � �+

[x][I . If 
 2 �+
[x][I and w � 
 < 0, then

supp 
 \ I 6= ; since w 2 C 00
y;x, and so supp 
 � x�I since supp 
 is connected.

Thus 
 2 �+
x�I
r �+

x�IrI
. Conversely, suppose 
 2 �+

x�I
r �+

x�IrI
. Take any

s 2 supp 
\ I. Then we have [�t]w ��s 6= 0 for some t 2 Sr [y]; otherwise, we

have �s = w�1w��s 2 w�1 ��[y] � �[x] since w 2 C 00
y;x, but this is contradiction.

Then, since [�t]w ��x� = 0 for any � 2 �(x) and [�t]w ��s0 6 0 for any s0 2 I,

we have [�t]w � 
 < 0 and so w � 
 < 0. Thus �+
w = �+

x�I
r �+

x�IrI
.

Since j�+
w j = `(w) < 1 and x�I r I ( x�I , Proposition 2.9 implies that

x�I is of �nite type. Further, Lemma 4.2 implies that �+
w0(x�I)w0(x�IrI)

= �+
w,

so we have w = w0(x�I)w0(x�I r I).

Proposition 5.9. Let (x; s) 2 B. Then (x; s) 2 B' if and only if �+
ws
x
\�?

[x] 6=
;.

Proof. Suppose '(x; s) = (x; s). Then we have w'l(x;s)
'v(x;s)

= ws
x and so (ws

x)
2 =

1. So by Theorem 2.3, ws
x � 
 = �
 for some 
 2 �+

x�s
. Now we have

h
; �x�i = hws
x � 
;ws

x � �x�i =
D
�
; �'v(x;s)�

E
= �h
; �x�i

for all � 2 �(x) since 'v(x; s) = x, so 
 2 �+
ws
x
\ �?

[x].

Conversely, suppose 
 2 �+
ws
x
\ �?

[x], so 
 2 �+
x�s and s
 2 C 00

x;x. Further,
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since 
 2 �?
[x], we have

1 = h
; 
i = X
t2supp


([�t]
) h
; �ti = ([�s] 
) h
; �si

and so h
; �si > 0. This implies s
 � �s < 0; in fact, this is obvious if 
 = �s.

On the other hand, if 
 6= �s, then [�t] 
 > 0 for some t 2 Sr fsg, so we have

[�t] (s
 � �s) = [�t] (�s � 2 h
; �si 
) = �2 h
; �si [�t]
 < 0:

Thus s
 � �s < 0. Hence we have s
 = ws
x by Lemma 5.8, and so 'v(x; s) = x

since s
 2 C 00
x;x.

Then Theorem 5.2 (i) now follows immediately; for such (x; s), we have

ws
x 2 C 00

'v(x;s);x by de�nition of 'v, while �+
ws
x
\ �?

[x] = ; by Proposition 5.9.

Hence ws
x 2 H'v(x;s);x. Moreover, since (ws

x)
�1 = w

'l(x;s)
'v(x;s)

, the groupoid anti-

homomorphism h, as in Theorem 5.2 (iii), exists uniquely and is identity on

S(�) (by the fact that P(H) is a free groupoid on H; cf. [4], [9]). For each

p 2 P(H), we write h(p) as a shorthand for h([p]). Now we show that h is

surjective, which completes Theorem 5.2 (iii). For any p = es1x1e
s2
x2
� � � esnxn 2

P(H), we say that p is nondegenerate if `(h(p)) =
Pn

i=1 `(w
si
xi
), degenerate

otherwise. Note that `(h(p)) 6
Pn

i=1 `(w
si
xi
) for any p 2 P(H).

Lemma 5.10. Suppose w 2 C 00
x;y, I � S and �I � �+

w . Then [y] \ I = ; and

J = y�I is of �nite type. Further, `(w) = `(wJ ) + `(wJ ), �+
wJ

= �+
w \ �+

J ,

wJ = w0(J)w0(J r I) and wJ 2 C 00
z;y for some z 2 S(�).

Proof. [y]\I = ; since �I � �+
w and w 2 C 00

x;y. Further, `(w) = `(wJ )+`(wJ)

and �+
wJ

= �+
w \ �+

J by Proposition 2.8. So �I � �+
wJ
.
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Let � 2 �(y), y� 2 J . Then we have

�x� = w � �y� = wJwJ � �y� =
X
t2J

([�t]wJ � �y�)wJ � �t:

Since wJ ��t > 0 for all t 2 J and �y� 62 �+
w � �+

wJ
, the right side of the above

equality is a nonnegative linear combination of positive roots, while the left

side is a simple root. This means that [�t]wJ � �y� > 0 for exactly one t 2 J ;

that is, wJ � �y� is a simple root. Thus we have wJ 2 C 00
z;y for some z 2 S(�).

Now Lemma 5.8 implies that J is of �nite type and wJ = w0(J)w0(J r I), as

required.

The surjectivity of h is deduced from the following:

Corollary 5.11. For any w 2 Hx;y, there exists a nondegenerate path p 2
P(H)y;x such that h(p) = w. Further, if s 2 S and w � �s < 0, then we can

take such p containing esy as its �rst edge; in particular, (y; s) 2 B r B'.

Proof. The case `(w) = 0 is obvious, so suppose `(w) > 0. Let s 2 S,

w � �s < 0. Since w 2 C 00
x;y, Lemma 5.10 implies that (y; s) 2 B, `(w(ws

y)
�1) =

`(w) � `(ws
y) < `(w) and �+

ws
y
= �+

w \ �+
y�s . Then we have �+

ws
y
\ �?

[y] �
�+
w \ �?

[y] = ; since w 2 Hx;y. So we have (y; s) 62 B' by Proposition 5.9,

and ws
y 2 H'v(y;s);y, therefore w(w

s
y)
�1 2 Hx;'v(y;s). Now by induction on `(w),

there is a nondegenerate p0 2 P(H)'v(y;s);x such that h(p0) = w(ws
y)
�1. Then

p = esyp
0 is a required path (note that h is an anti-homomorphism).

Remark 5.12. Although Proposition 5.5 of [6] is similar to Corollary 5.11,

they have the following di�erences. In this corollary we deal with transition

between ordered tuples, while [6] deals with transition between subsets of S
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only. Moreover, this corollary gives a decomposition of w in H, while [6] only

gives a decomposition in C 00, a larger groupoid than H.

Remark 5.13. Ax = fA 2 CO>1
<1(x) j HxA;x 6= ;g since h is surjective.

On the other hand, Theorem 5.2 (ii) is deduced from the following:

Lemma 5.14. wA
x 2 GxA;x and AwA

x
= A for any A 2 CO>1

<1(x).

Proof. Since xA
iso = ;, we have w0(xA) 2 C 0

xA;x by de�nition of xA, while

�+
w0(xA)

\ �?
[x] = ; since w0(xA) 2 W[x]. Thus w0(xA) 2 GxA;x. Aw0(xA) = A is

obvious.

Now we show Theorem 5.2 (iv).

Lemma 5.15. (i) If Gx;y 6= ;, then Ax = Ay. (So AxA = Ax for any A 2
CO>1

<1(x) by Lemma 5.14.)

(ii) Aw 2 Ax for any w 2 G0
x;y.

Proof. (i) Take any w 2 Gx;y, and let A 2 Ay. For � 2 �(y), let "� be + or

� such that �x� = "�w � �y� . If � 62 A, then we have

�(xA)� = �x� = "�w � �y� = "�w � �(yA)� :

Suppose � 2 A, and let �yA(y�) = y�. Then we have �xA(x�) = x� by Remark

5.6. Further, "� = "� since y� and y� belong the same connected component

of [y]. So we have

�(xA)� = �x� = "�w � �y� = "�w � �(yA)�:
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Moreover, �+
w \ �?

[yA] = �+
w \ �?

[y] = ; since w 2 Gx;y. Thus w 2 GxA;yA . We

distinguish this w by writing w0. Then the above argument shows Aw0 = Aw.

Since A 2 Ay, there is a path p 2 P(H)y;yA . Now we have w0h(p)w�1 2
GxA;yAHyA;yGy;x � GxA;x and Aw0h(p)w�1 = Aw;(Aw)�1 = ;, so w0h(p)w�1 2
HxA;x. This implies A 2 Ax, so we have Ay � Ax. The converse is similar.

(ii) wAw
x 2 GxAw ;x by Lemma 5.14, while some w0 2 Hx;y exists by de�nition

of G0. Then we have wAw
x ww0�1 2 GxAw ;x and AwAw

x ww0�1 = AwAw; = ;, so
wAw
x ww0�1 2 HxAw ;x. This implies Aw 2 Ax.

Proof of Theorem 5.2 (iv). Let A 2 Ax. Then by Lemmas 5.14 and 5.15,

we have wA
x 2 G0

xA;x (since HxA ;x 6= ;) and (wA
x )

�1 = wA
xA (since (xA)A = xA).

So, similarly to the case of h, such g exists uniquely and is identity on S(�).

We write g(p), p 2 P(G) as a shorthand for g([p]).

Now we show that g is surjective. Let w 2 G0
x;y. Then wAw

x 2 GxAw ;x and

AwAw
x w = AwAw = ;. So we have wAw

x w 2 HxAw ;y and then wAw
x w = h(p)

for some p 2 P(H)y;xAw since h is surjective. Further, the edge eAw
x exists

by Lemma 5.15 (ii). Thus we have p0 = p(eAw
x )�1 2 P(G)y;x and g(p0) =

(wAw
x )�1h(p) = w. Hence g is surjective.

From now on, we prove Theorem 5.3. Note that Ax = Ay whenever y 2
V (G�x) = V (H�x), by Lemma 5.15 (i).

Lemma 5.16. Let A 2 Ax and esy 2 H�x. Then esyA 2 H�x and 'v(yA; s) =

'v(y; s)A. Further, ws
y = ws

yA in W and wA
'v(y;s)

ws
y(w

A
y )

�1 = ws
yA in G.

Proof. Put '(y; s) = (z; s0). Then we have ws
y 2 C 00

zA;yA similarly to the proof

of Lemma 5.15 (i), while ws
y � �s < 0. So Lemma 5.8 implies that (yA; s) 2 B,
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ws
y = ws

yA and 'v(y
A; s) = zA. Now y 6= z implies yA 6= zA, so (yA; s) 62 B'.

Further, since y 2 V (H�x) and A 2 Ax, we have yA 2 V (H�x) and so

esyA 2 H�x.

Now we have wA
z w

s
y(w

A
y )

�1 2 GzA ;zHz;yGy;yA � GzA;yA . Further, since w
A
y 2

W[y], we have (w
A
y )

�1 � �s 2 �+
y�s r �+

y�srfsg
and so ws

y(w
A
y )

�1 � �s 2 ��
z
�s0
r

��
z
�s0rfs

0g, thereforew
A
z w

s
y(w

A
y )

�1��s < 0. Then, sincewA
z w

s
y(w

A
y )

�1 2 W[yA][fsg,

Lemma 5.8 implies that wA
z w

s
y(w

A
y )

�1 = ws
yA, as required.

Corollary 5.17. (i) For any edge esy of H�x and A 2 Ax, e
s
yA is also an

edge of H�x from yA to 'v(y; s)A and e
'l(y;s)
'v(y;s)A

= (esyA)
�1. Hence we can de�ne

�A 2 AutH�x by �A(y) = yA and �A(esy) = esyA , and it induces a groupoid

automorphism e�A on P(H�x).

(ii) wA
z h(p)(w

A
y )

�1 = h(e�A(p)) for any p 2 P(H�x)y;z and A 2 Ay.

(iii) Ax is a subgroup of CO>1
<1(x).

(iv) Both Ax 3 A 7! �A 2 AutH�x, Ax 3 A 7! e�A 2 AutP(H�x) are group

homomorphisms.

Proof. For any edge esy of H�x and A 2 Ax, we have 'v(yA; s) = 'v(y; s)A

by Lemma 5.16. So
h
'v(yA; s)

i
= ['v(y; s)], while

h
yA
i
[fsg = [y][fsg. Then

we have 'l(yA; s) = 'l(y; s) by Remark 4.1; thus (i) holds. (ii) is deduced by

repeated use of Lemma 5.16.

Now we show (iii). Let A;A0 2 Ax. Then some p 2 P(H)x;xA exists, so

�A0(p) 2 P(H)xA0 ;xAA0 . Thus we have P(H)xA0 ;xAA0 6= ;, therefore xAA
0 2

V (H�xA0 ) = V (H�x) since A0 2 Ax. This implies that AA0 2 Ax; so (iii)

holds. Finally, (iv) immediately follows from de�nition.

Proof of Theorem 5.3 (i). Let Nx be the normal subgroupoid of P(H�x)
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generated by all [p], p 2 R1(x). Then we show kerhx = Nx.

Claim 1. Nx � kerhx.

Proof of Claim 1. Let p 2 R1(x). Then p is of length at least two sinceH has

no loops. Now s2 6= 'l(y1; s1) since p is reduced, and so s2 62 [y2][f'l(y1; s1)g =
[y1][fs1g, therefore I = [y1][fs1; s2g. This implies that Ir[yi] � J for all i by

induction, where J = I�fs1;s2g. Thus we have h(p) 2 WJ , while h(p) 2 Hy1;y1

and J is of �nite type. So Theorem 2.4 implies that h(p) can be written as a

product of re
ections in WJ which �x �[y1]\J pointwise. Now since no element

of [y1] r J is adjacent to an element of J , these re
ections in fact �x �[y1]

pointwise. This yields h(p) 2 W (�?
[y1]

)\Hy1;y1 , while W (�?
[y1 ]

)\Hy1;y1 = 1 by

Theorem 3.5. Hence h(p) = 1. (End of proof of Claim 1)

We show kerhx � Nx. Let p = es1y1 � � � esnyn 2 P(H�x) such that h(p) = 1 (so p

is a closed path). We show [p] 2 Nx by induction on jpj =Pn
i=1 `(w

si
yi
). This is

obvious when jpj = 0, so suppose jpj > 0. Then p is degenerate since h(p) = 1,

while es1y1 is nondegenerate. So there is some index 1 6 k 6 n � 1 such that

p(1;k) is nondegenerate and p(1;k+1) is degenerate, where p(i;j) = esiyie
si+1
yi+1

� � � esjyj
for any indices i; j. Put w = h(p(1;k))�1.

If sk+1 = 'l(yk; sk), then we have [p] =
h
p(1;k�1)p(k+2;n)

i
2 Nx by induction.

So we may assume sk+1 62 [yk+1] [ f'l(yk; sk)g = [yk] [ fskg.
Claim 2. w � �'l(yk ;sk) < 0 and w � �sk+1 < 0.

Proof of Claim 2. Since p(1;k�1) is nondegenerate, Lemma 2.1 (i) implies

that �+
h(p(1;k�1))�1 \ �+

w
sk
yk

= ;, while (wsk
yk
)�1 � �'l(yk;sk) < 0. Thus we have

�w � �'l(yk ;sk) = h(p(1;k�1))�1 � (�(wsk
yk
)�1 � �'l(yk;sk)) > 0:

On the other hand, `(h(p(1;k+1))) < `(w�1) + `(wsk+1
yk+1

) by the choice of k, and

so �+
w \ �+

w
sk+1
yk+1

6= ; by Lemma 2.1 (i). This implies that w � �sk+1 < 0 since
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w 2 C 00
y1 ;yk+1

and �+

w
sk+1
yk+1

� �+
(yk+1)�sk+1

. (End of proof of Claim 2)

Put I = [yk+1] [ f'l(yk; sk); sk+1g and J = I�f'l(yk;sk);sk+1g. Then Lemma

5.10 implies that J is of �nite type, wJ � �'l(yk ;sk) < 0, wJ � �sk+1 < 0, wJ 2
Hz;yk+1 and w

J 2 Hy1 ;z for some z 2 S(�). Further, by Corollary 5.11, there are

nondegenerate paths q1 2 P(H)z;y1 , (e
sk
yk
)�1q2 2 P(H)yk+1;z such that h(q1) =

wJ , h((eskyk)
�1q2) = wJ and (eskyk)

�1q2 is contained inH(I) (since wJ 2 WI). Note

that
���(eskyk)�1q2q1

��� = `(wJ ) + `(wJ ) = `(w). Similarly, there is a nondegenerate

path esk+1
yk+1

q3 2 P(H)yk+1;z contained in H(I) and satisfying h(esk+1
yk+1

q3) = wJ .

Note that
���esk+1
yk+1

q3q1
��� = `(w).

Claim 3.
h
esk+1
yk+1

q3q2
�1eskyk

i
2 Nx.

Proof of Claim 3. By the above argument, p0 = esk+1
yk+1

q3q2
�1eskyk 2 P(H�x) is

a closed path contained in H(I), jI r [yk+1]j = 2 and I�Ir[yk+1] = J is of �nite

type. Now we can write [p0] = [p1c1p1�1 � � � pmcmpm�1], where pi 2 P(H(I))

and ci 2 P(H(I)) is a nontrivial simple closed reduced path. Thus ci 2 R1(x).

Hence we have [p0] 2 Nx. (End of proof of Claim 3)

Claim 4.
h
p(1;k�1)q2q1

i
2 Nx and

h
q1
�1q3

�1p(k+2;n)
i
2 Nx.

Proof of Claim 4. By the choice of q1, q2, we have

h(p(1;k�1)q2q1) = wJ (wJw
sk
yk
)h(p(1;k�1)) = wh(p(1;k)) = 1;

while h(p(k+1;n)) = h(p)h(p(1;k))�1 = w implies that

���p(1;k�1)q2q1
��� = ���p(1;k�1)���+ (`(w) �

���eskyk
���) 6 ���p(1;k�1)���+ ���p(k+1;n)���� ���eskyk

��� < jpj :

Thus
h
p(1;k�1)q2q1

i
2 Nx by induction. Similarly, we have

h(q1
�1q3

�1p(k+2;n)) = (w(wsk+1
yk+1

)�1)(wsk+1
yk+1

(wJ)
�1)(wJ )�1 = 1;

���q1�1q3�1p(k+2;n)
��� = (`(w) �

���esk+1
yk+1

���) + ���p(k+2;n)��� < jpj ;

so
h
q1
�1q3

�1p(k+2;n)
i
2 Nx by induction. (End of proof of Claim 4)
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Since

[p] =
h
p(1;k�1)q2q1

i

�
h
q1
�1q2

�1eskyk

i h
esk+1
yk+1

q3q2
�1eskyk

i h
q1
�1q2

�1eskyk

i�1 � hq1�1q3�1p(k+2;n)
i
;

we have [p] 2 Nx by Claims 3 and 4. Hence kerhx � Nx.

Proof of Theorem 5.3 (ii). Let Nx be the normal subgroupoid of P(G�x)
generated by all [p], p 2 R1(x) [R2(x) [R3(x). Then we show ker gx = Nx.

First, we show Nx � ker gx. Theorem 5.3 (i) shows that [p] 2 kerhx �
ker gx if p 2 R1(x). For p = eAy e

A0

yA(e
AA0

y )�1 2 R2(x), we have w0(yAA0) =

w0(yA0)w0(yA), w0((yA)A0) = w0(yA0) since A;A0 are unions of connected com-

ponents of [y]. So we have g(p) = 1. Further, by Lemma 5.16, we have g(p) = 1

for any p 2 R3(x). Thus Nx � ker gx.

Conversely, we show ker gx � Nx. Take any p 2 P(G�x) such that g(p) = 1,

and we show [p] 2 Nx. Note that Nx � ker gx as proved above. So by

repeated use of elements of R3(x), we may assume that p is of the form

p0eA1
y eA2

yA1
� � � eAk

yA1 ���Ak�1
, p0 2 P(H�x) without changing whether [p] 2 Nx or

not.

Since g(p) = 1 2 H, we have ; = Ag(p) = A1A2 � � �Ak. Then we have

h
eA1
y eA2

yA1 � � � eAk

yA1 ���Ak�1

i

=
h
eA1
y eA2

yA1 � � � eAk�1

yA1 ���Ak�2
e
A1���Ak�1

yA1 ���Ak�1

i

=
h
eA1
y � � � eAk�2

yA1 ���Ak�3
e
A1���Ak�2

yA1���Ak�2

i h
eA1���Ak�2
y e

Ak�1

yA1 ���Ak�2
(eA1 ���Ak�1

y )�1
i

and so
h
eA1
y eA2

yA1
� � � eAk

yA1 ���Ak�1

i
2 Nx by induction on k. Since Nx � ker gx, this

implies h(p0) = 1; so [p0] 2 kerhx � Nx by Theorem 5.3 (i). Hence we have

[p] 2 Nx, as required.

Finally, we examine the structure of Gx;x more precisely. Recall that Hx;x
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is normal in Gx;x.

Lemma 5.18. The map Gx;x=Hx;x 3 wHx;x 7! Aw 2 Ax is an isomorphism

of groups.

Proof. The well-de�nedness and injectivity of this map are deduced from the

de�nition of H and Lemma 5.15 (ii). For A 2 Ax, we have h(p)�1wA
x 2 Gx;x

and Ah(p)�1wA
x
= A for some p 2 P(H)x;xA since xA 2 V (H�x); thus this map

is surjective.

Corollary 5.19. Suppose that the group Ax is generated by certain elements

A�. For each �, let ep� = pxA� (e
A�
x )�1 2 P(G)x;x.

(i) Gx;x is generated by all h(q), q 2 P(H)x;x and all g(ep� ).
(ii) g(ep�)h(q)g(ep�)�1 = h(e�A� (pxA�

�1qpxA� )).

(iii) g(ep�)2 = h(pxA� e�A� (pxA� )).

(iv) g(ep�1)�1g(ep�2)�1g(ep�1)g(ep�2 ) = h(pxA�2 e�A�2
(pxA�1 )e�A�1

(pxA�2 )
�1pxA�1

�1).

Proof. Let w 2 Gx;x. Then Aw = A�1 � � �A�k for some indices �1; : : : ; �k by

the hypothesis. Since Ag(ep�) = A�, we have wg(ep�1 )�1 � � � (ep�k )�1 2 Hx;x, and

so it is written as h(q), q 2 P(H)x;x since h is surjective. Hence (i) holds.

Further, (ii)-(iv) are deduced from Corollary 5.17 by direct computing.

6 Examples

Example 6.1. (W;S) is of type fB7 and x = (1; 2; 4; 5; 8) 2 S(�), as in Fig. 3 (in

this section we write i as a shorthand for si). Then we compute the centralizer

Cx;x of Wf1;2;4;5;8g.
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y1

y2

i
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y
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H
H
HH
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�
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Fig. 3. Coxeter graph of type fB7

1. Fig. 3 implies [x]iso = f1; 2; 8g. So by Corollary 3.2,

Cx;x = Wf1;2;8g� C 0
x;x ' (Z=2Z)3� C 0

x;x:

2. The graph H�x is as in Fig. 4. In this case, H�x has no parallel edges,

I II III IV

V VI VII VIII

P
P
P
P
P
P
P
P
P
P
P
P
P�

�
�
�
�
�
�
�
�
�
�
�
�

4 6 3 3 6 4

3

3

3

3

4 6 3 3 6 4

7

77

7

I = (1; 2; 5; 6; 8)
II = (1; 2; 4; 5; 8) = x

III = (2; 1; 5; 4; 8)
IV = (2; 1; 6; 5; 8)
V = (2; 1; 5; 6; 8)
VI = (2; 1; 4; 5; 8)

VII = (1; 2; 5; 4; 8) = xA0

VIII = (1; 2; 6; 5; 8)

Fig. 4. Connected component of H

so let e(y; z) denote the unique directed edge of it from y to z. Now we give

a presentation of Hx;x by using Theorem 5.4. Let Tx be a maximal tree as in

Fig. 5.

To determine R1(x), we have only to consider H(I)
�x for I = S r fsg,

I II III IV

V VI VII VIII

4 6 3 3 6 4

3

3

3

3

4 6 3 3

Fig. 5. Maximal tree in Fig. 4

s 2 S since `(x) + 2 = 7 = jSj � 1. For example, if s = 4, then we ob-

tain H(I)
�x from H�x by deleting four vertices II, III, VI, VII and six edges
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e(I; II); e(II; III); e(III; IV); e(V;VI); e(VI;VII); e(VII;VIII). By similar argu-

ment, H(I)
�x is nonempty for s = 3; 4; 6; 7, as in Fig. 6, while this is empty for

s = 1; 2; 5; 8.

Thus we have R1(x) = fc1; c2g, where

I II III IV

V VI VII VIII

P
P
P
P
P
P
P
P
P
P
P
P
P�

�
�
�
�
�
�
�
�
�
�
�
�

4 6 6 4

4 6 6 4

7

77

7

H(Srf3g)
�x

I IV

V VIII

P
P
P
P
P
P
P
P
P
P
P
P
P�

�
�
�
�
�
�
�
�
�
�
�
�3

3

3

3

7

77

7

H(Srf4g)
�x

II III

VI VII

3 3

3 3

H(Srf6g)
�x

I II III IV

V VI VII VIII

4 6 3 3 6 4

3

3

3

3

4 6 3 3 6 4

H(Srf7g)
�x

Fig. 6. Subgraphs H
(I)
�x of Fig. 4

c1 = e(I;VIII)e(VIII; IV)e(IV;V)e(V; I);

c2 = e(I; II)e(II; III)e(III; IV)e(IV;VIII)e(VIII;VII)e(VII;VI)e(VI;V)e(V; I)

(note that in this case, every proper subset of S is of �nite type). Now, by

Theorem 5.4, Hx;x is anti-isomorphic to

D
E(H�x) j fee�1 j e 2 E(H�x)g [ fe j e 2 Txg [ fc1; c2g

E

' he(I;VIII); e(IV;V); e(VII;VIII)

j e(I;VIII)e(IV;V) = 1; e(VII;VIII)�1 = 1
E

' he(IV;V) ji 'Z:

(6.1)
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Further, e(IV;V) in this presentation corresponds to h(q) 2 Hx;x, where

q = pIVe(IV;V)pV
�1 = e(II; III)e(III; IV)e(IV;V)e(V; I)e(I; II);

so Hx;x is the free group of rank one generated by h(q).

3.We describe the structure of Gx;x by using Corollary 5.19. First, it follows

from Fig. 3 that each A 2 CO(x) is a union of some of f1g, f2g, f3; 4g, f5g.
Then we have CO>1

<1(x) = f;; f3; 4gg. Put A0 = f3; 4g. Then we have xA0 =

(1; 2; 5; 4; 8) = VII and so Ax = f;; A0g. Let epA0 = pxA0 (eA0
x )�1 2 P(G)x;x.

By Corollary 5.19 (i), Gx;x is generated by h(q) and g(epA0 ) since Hx;x is

generated by h(q). Further, by that corollary, we have

g(epA0 )
2 = h(pxA0 e�A0(pxA0 ))

= h(pxA0 e(VII;VIII)e(VIII; IV)e(IV; III)e(III; II))

and this equals to 1; in fact, in the presentation (6.1), the path in the right

side of the above equality is equal to e(VII;VIII) and then vanishes. Similarly,

we have

g(epA0)h(q)g(epA0)
�1

= h(e�A0 (pxA0
�1qpxA0 ))

= h(e�A0 (e(VII;VI)e(VI;V)e(V; I)e(I; II)

� e(II; III)e(III; IV)e(IV;V)e(V;VI)e(VI;VII)))

= h(e(II; III)e(III; IV)e(IV;VIII)e(VIII;VII)

� e(VII;VI)e(VI;V)e(V; IV)e(IV; III)e(III; II))

and this equals to h(q)�1 by (6.1). Thus we have

Gx;x =
D
h(q); g(epA0) j g(epA0)

2 = 1; g(epA0 )h(q)g(epA0)
�1 = h(q)�1

E
:
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This implies that f1; g(epA0 )g forms a subgroup of Gx;x isomorphic to Ax, so

we have

Gx;x ' Hx;x oAx 'Zo (Z=2Z);

where 1 2Z=2Zacts on Zas multiplication by �1. Moreover, put a = g(epA0 )

and b = ah(q). Then we have

Gx;x =
D
a; b j a2 = 1; b2 = 1

E
' fA1:

4.We determine the structure of the Coxeter system (W (�?
[x]);

eSx). Accord-
ing to the result of [14], or by direct computing, we have

e�x = fe
; h(q) � e
g; where e
 =
p
2�7 + �8 = s7 � �8:

Put � = e
, �0 = h(q) � e
. Then �0 =
p
2 Æ � �, where

Æ = �1 + �2 + 2�3 + 2�4 + 2�5 + 2�6 + 2�7 +
p
2�8

is the null root of fB7.

This implies h�; �0i = �1, so (W (�?
[x]);

eSx) is of type fA1. Further, we have

g(epA0) � � = � 0, h(q) � � = �0, and so Proposition 3.7 implies g(epA0) � �0 = �,

h(q) � �0 = �. Then

a � � = �0; a � �0 = �; b � � = �; b � �0 = �0:

So we have C 0
x;x ' fA1 o fA1, where one of the generators of right fA1 (that is,

b) acts trivially on left fA1 and the another (that is, a) acts as an involution of

the Coxeter graph of left fA1.

Summarizing, we have Cx;x ' (Z=2Z)3� (fA1 o fA1).

In this example,Gx;x is isomorphic to the semidirect product of Hx;x by Ax,

and Hx;x forms a free group. But these properties may fail in general.
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Let (W;S) be as in Fig. 7 and let x = (1; 2; 4; 5; 7; 8). Then, similarly to

y
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Fig. 7. Coxeter graph of another example

the previous example, it can be shown that

W[x]iso = 1; W (�?
[x]) = 1; Gx;x 'Z2; Hx;x ' (2Z)2 �Z2:

Thus Hx;x is not a free group, and Gx;x is not isomorphic to any semidi-

rect product of Hx;x by a group, since Gx;x has no subgroup isomorphic to

Gx;x=Hx;x ' (Z=2Z)2.

At last of this section, we give some remarks on the preceding results men-

tioned in Introduction.

First, let x 2 S(�), [x] = S. Then by de�nition, W[x]iso is generated by all

w0(J) where J runs over the connected components of S satisfying jJ j = 1,

while obviously W (�?
[x]) = 1. On the other hand, H�x consists of only a single

point x and so Hx;x = 1. This implies that Ax = fA � CO>1
<1(x) j xA = xg,

so Ax is generated (as a group) by all A � �(x) such that xA is a connected

component of [x] of �nite type, jxAj > 2 and �xA = idxA. Hence by Corollary

5.19 (i), the well-known result on ZW (WS) is in fact recovered.

Secondly, we also recover the result of Brink [2] by using our result; we check

that ZW (s) (s 2 S) is the semidirect product of W (�?
fsg [ f�sg) by a group

isomorphic to the fundamental group of the odd Coxeter graph of (W;S). The

odd Coxeter graph � odd is the subgraph of � obtained by deleting all edges

labeled an even number or 1.
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Now for x = (s), we have

W[x]iso �W (�?
[x]) = hsi �W (�?

fsg) = W (�?
fsg [ f�sg):

On the other hand, we have Gx;x = Hx;x since Ax = f;g. Further, H�x

is considered as a connected component of � odd containing s; in fact, each

y 2 V (H�x) is identi�ed with t 2 S such that y = (t), and then y is adjacent

to z = (t0) if and only if (y; t0) 2 B r B', or equivalently t 6= t0 and mt;t0 is

odd (cf. Fig. 1). Now we have R1(x) = ;; in fact, if p 2 P(H)y;y satis�es the

condition for R1(x), then p is a nontrivial cycle in �I , but this is impossible

since I�y is of �nite type. This implies that kerhx is trivial, so Hx;x is anti-

isomorphic to P(H)x;x which is a free group, as required.

Finally, we deal with the case where (W;S) is even (that is, every ms;s0

is even or 1) considered in the recent work by Bahls and Mihalik [1]. Our

approach is di�erent from that in [1], but gives the same generators of ZW (WI)

as [1] as follows.

In this case, H�x consists of only a single point x for any x 2 S(�), by Fig. 1.

Now similarly to the case of ZW (WS), Gx;x is generated by all w0(J) where

J runs over the connected components of [x] of �nite type satisfying jJ j > 2

and �J = idJ . Since (W;S) is even, a connected component J satis�es this

condition if and only if J = fs; s0g for some s; s0 2 S such that ms;s0 is an even

number greater than 2. For such J , we have w0(J) = (ss0)ms;s0=2 2 W[x], and so

Gx;x is contained in the center of Cx;x. Note that Gx;x is the direct products of

copies ofZ=2Z' A1 and so is an even Coxeter group. These generators w0(J)

along with the generators of the remaining factor W[x]iso �W (�?
[x]) given by

the result in [14] coincide with the generators given in [1].
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