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Abstract. This paper deals with an inverse problem of determining the shape
and location of inhomogeneity D in an elliptic equation with a Neumann
boundary condition ∂u

∂ν = g on ∂Ω

−∆u(x) + pχD(x)u(x) = 0, x ∈ Ω,

where D ⊂ Ω and χD is the characteristic function of a subdomain D. We
prove the global uniqueness in this inverse problem by a single measurement
of Dirichlet data u on ∂Ω.

1. Introduction

We consider the Neumann problem{ −∆u+ pχDu = 0 in Ω,
∂u
∂ν

= g on ∂Ω,
(1.1)

where p is a positive constant, χD is the characteristic function of a subdomain
D and ν is the unit outward normal vector to ∂Ω. We assume that Ω ⊂ R

2 is a
bounded domain with boundary C2 and D is a subdomain compactly contained
in Ω with Lipschitz boundary ∂D. Since there exists a unique solution u ∈ H1(Ω)

of (1.1) for a given domain D and g ∈ H− 1
2 (∂Ω), the Neumann-to-Dirichlet map

ΛD : H− 1
2 (∂Ω) → H

1
2 (∂Ω) can be defined by

ΛD(g) := u|∂Ω. (1.2)

The inverse problem in this paper is to identify the unknown domain D by a
single boundary measurement (g,ΛD(g)) on ∂Ω.

This type of elliptic equation appears in the determination of the metal-to-
semiconductor contact and its resistivity of electric devices. Let us briefly explain
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a metal-to-semiconductor contact according to [9, 10]. Every semiconductor de-
vice has metal-to-semiconductor contacts and such contacts form a barrier for
electrons and holes. In particular, a large mismatch between the Fermi energy of
the metal and the semiconductor can result in a high-resistance rectifying con-
tact. In fabrication of semiconductor devices, therefore, it is important to control
and reduce the surface states at the interface between the metal and the semi-
conductor, i.e., to obtain accurate values of contact resistivity and the physical
parameters that govern the interfacial contact resistance. Thus there has been
many researches which analyze these contacts as well as the contact resistivity
between a (thin) metal layer and a (thin) semiconductor (e.g., [9, 10]). Since the
depth of each layer is very thin compared with the length and width, [10] approx-
imated the actual three-dimensional problem to the two-dimentional modelling.
Then current density g is applied into a side of semiconductor layer Ω (called
the diffusion layer) and the corresponding electric potential u satisfies an elliptic
equation { −∆u+ pχD(u− v) = 0 in Ω,

∂u
∂ν

= g on ∂Ω,

where p = Rs

ρc
(Rs : the sheet resistance of the semiconductor layer and ρc : the

contact resistivity), D is the metal-to-semiconductor contact and v is the metal
layer potential corresponding to the applied density g. Since the metal layer
is usually much more conductive than the semiconductor layer, the metal layer
potential v is essentially constant. This constant metal potential v is set at zero
and hence two-dimentional main equation (1.1) is obtained.

There are extensive studies concerning our inverse problem (e.g. [3, 5, 12, 13,
14]). In [3], a uniqueness result within a one-parameter monotone family from a
one-point boundary measurement of the potential was obtained. Moreover [14]
provides a global uniqueness result and a reconstruction scheme within the class
of two- or three-dimensional balls from a single boundary measurement. Fur-
thermore Kim and Yamamoto [13] shows a proposition about some non-existence
of an H2−solution to a Cauchy problem of the Laplace equation and can prove
the global uniqueness within convex hulls of general polygons by using the non-
existence proposition. In the same paper, however, one example is shown, which
says that the non-existence proposition does not work in the case where ∂D is
smooth. From this standpoint, [12] proposes one global method for our inverse
problem. The method is to convert the related two- or three-dimensional par-
tial differential equation into an ordinary differential equation and [12] succeeds
partially in proving the global uniqueness within domains with smooth bound-
ary. More detailedly speaking, [12] proves the global uniqeness within families of
D’s with some seperation property or symmetry. The families can contain many
kinds of subdomain D’s, for example, balls and concentric ellipses, but is rather
restrictive. The purpose of this paper is to relax the restrictions in [12] and to
present more improved uniqueness results. Furthermore we deal with the global
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uniqueness within convex domains. We add that even within convex domains the
global uniqueness is referred as an open problem in Isakov [8] (Problem 4.7.2 on
p 104).

As for related inverse problems of determining piecewise continuous coefficient
γ = γ(x) in ∇ · (γ∇u) = 0 in Ω, we can refer to [1, 2, 6, 15, 16, 17]. Inverse
problems of the determination of the potential q in the Schrödinger equation
−∆u+ qu = 0 in Ω is another related significant problem. Our inverse problem
is concerned with the determination of shapes of domains and is of a character
similar to the classical inverse source problem or the inverse gravimetry where we
are required to determine a domain D in −∆u+kχD = 0 by a single measurement
of an exterior potential, where k is a nonzero constant. Moreover the gravimetry
problem has the uniqueness result in classes of star-shaped domains with respect
to their centres of gravity or xn−direction convex domains (e.g., [7]). To convert
integrals in the interior of domains into integrals on their boundaries, in addition
to integration by parts, [7] used an observation that if v is harmonic, then so is
x · ∇v + 3v. Because of the potential u in the source term pχD(x)u(x), however,
this method cannot be applied to our inverse problem.

The outline of this paper is as follows. In Section 2, we are going just to touch
the case in which domains have common-contact boundary portion. In Section 3,
we introduce some orthogonality relation, which plays an essential role in proving
our remaining main theorems. Next we prove two uniqueness results Theorem
3.2 and Theorem 3.3, which generalize the previous results in [12]. Finally, in
Section 4, we prove the uniqueness within convex domains with some reflection
condition which will be defined in the same section.

2. Common-Contact Case

Throughout this paper we assume that g ∈ C0,α(∂Ω) for some 0 < α < 1,
g ≥ 0 and g 	≡ 0 on ∂Ω, and that the domains D under consideration are
bounded, simply connected and compactly contained in Ω. If u is the solution to
(1.1) corresponding to D and g, then it is well known (e.g., [4, 11]) that

u ∈ C1(Ω) ∩H2(Ω). (2.1)

Also by the maximum principle and Hopf’s lemma, we see that

u > 0 in Ω \D and u ≥ 0, 	≡ 0 in D. (2.2)

Definition 2.1. Let D and E be simply connected and compactly contained do-
mains in Ω. We say that D and E satisfy the i-contact condition if the sets
Ω\ (D ∪ E), D∩E are connected, (∂D∩∂E)∩ int(D ∪ E) = ∅ and there exists a
nonempty hypersurface which belongs to the boundaries of both Ω \ (D ∪E) and
D ∩E.

For instance, if D and E are star-shaped domains with respect to the origin so
that ∂D∩∂E contains a nonempty relatively open portion, then D and E satisfy
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the i-contact condition. The following theorem states the global uniqueness
within domains satisfying the i-contact condition.

Theorem 2.2. Assume that D1 and D2 satisfy the i-contact condition. Then
ΛD1(g) = ΛD2(g) implies that D1 = D2.

Proof. Let uj, j = 1 and 2, be the solution to (1.1) corresponding to the domain
Dj . Setting y = u1 − u2 in Ω, then y is a harmonic function in Ω \ (D1 ∪D2)

with y = ∂y
∂ν

= 0 on ∂Ω. Since D1 and D2 satisfy the i-contact condition,

Ω\(D1 ∪D2) and D1∩D2 are connected. It follows from the unique continuation
that

y ≡ 0 in Ω \ (D1 ∪D2). (2.3)

Let S be a nonempty hypersurface which belongs to the boundaries of both
Ω \ (D1 ∪D2) and D1 ∩D2. Then (2.1) and (2.3) imply that

y = |∇y| = 0 on S. (2.4)

Since D1 ∩ D2 is connected and ∆y = py in D1 ∩ D2, (2.4) and the unique
continuation say that

y ≡ 0 in D1 ∩D2. (2.5)

Assume contrarily that D1 	= D2. Then either D1 \ D2 	= ∅ or D2 \ D1 	= ∅.
Renumbering, if necessary, we may assume that D1 \D2 	= ∅. By (2.3) and (2.5),
we have

y = |∇y| = 0 on ∂(D1 \D2). (2.6)

Thus (1.1) and (2.2) yield

0 < p

∫
D1\D2

u1 dx =

∫
D1\D2

∆y dx =

∫
∂(D1\D2)

∂y

∂ν
dσ = 0,

which is a contradiction. HenceD1 = D2, so our proof of Theorem 2.2 is complete.

3. Orthogonality Relation And Symmetric Case

For a moment we consider the gravimetry problem which has a similar form
to the governing equation of our inverse problem, that is,

−∆u+ kχD = 0 in R
2 and lim

|x|→∞
u(x) = O(ln |x|), (3.1)

where k is a positive (or negative) constant. For details, we can refer to [7]. Be-
cause there is no fear of confusion, we denote the solution to (3.1) corresponding
to Dj , j = 1 and 2, by uj and u1 − u2 by y. Let Ω0 be a bounded domain with
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(D1 ∪D2) ⊂ Ω0. If ∇u1 = ∇u2 on ∂Ω0 and Ω0 \ (D1 ∪D2) is connected, then for
any v ∈ H1(Ω0) we can apply the Green theorem to get

0 =

∫
D1∪D2

(∆y)v − y(∆v) dx. (3.2)

In the gravimetry problem, an harmonic function is taken as a test function v
and we have

0 =

∫
D1∪D2

(∆y)v dx. (3.3)

And since ∆y = k in D1 \D2, ∆y = −k in D2 \D1 and ∆y = 0 in D1 ∩D2, we
can obtain an orthogonality relation∫

D1\D2

v dx =

∫
D2\D1

v dx, (3.4)

on which the uniqueness of a domain in the gravimetry problem is based.
However, if an harmonic function is taken as a test function v in our inverse

problem, then (3.3) can be changed as follows

0 =

∫
D1\D2

u1v dx+

∫
D1∩D2

yv dx−
∫

D2\D1

u2v dx. (3.5)

Here, unfortunately, we have no information about y on D1 ∩D2, and so (3.5) is
not of help to us. The following lemma gives an alternative for our inverse problem
to (3.4) and our remaining theorems are essentially based on this lemma.

Lemma 3.1. Let Dj, j = 1 and 2, be a simply connected and compactly contained
domain in Ω and let uj the solution to (1.1) corresponding to Dj. Assume that Ω\
(D1 ∪D2) is simply connected and let Ω0 be a bounded domain with (D1 ∪D2) ⊂
Ω0. If ΛD1(g) = ΛD2(g), then for any function v ∈ H1(Ω0) satisfying an elliptic
equation ∆v = pv in Ω0 the following orthogonality relation holds∫

D1\D2

u2v dx =

∫
D2\D1

u1v dx.

Proof. By (1.1), (2.3) and (3.2), we obtain

0 = p
∫

D1\D2
u1v dx + p

∫
D1∩D2

yv dx− p
∫

D2\D1
u2v dx− ∫

D1∪D2
y(∆v) dx

= p
∫

D1∪D2
yv dx + p

∫
D1\D2

u2v dx− p
∫

D2\D1
u1v dx− ∫

D1∪D2
y(∆v) dx.

(3.6)

Since ∆v = pv in D1 ∪D2, hence we have

0 =

∫
D1\D2

u2v dx−
∫

D2\D1

u1v dx,

which completes our proof of Lemma 3.1.
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θ = t1(= t2n+1)

θ = t2

θ = t3

θ = t2n

S(t2; t3)
∂D2

∂D1

Figure 1. Symmetric case

Now we are ready to state the next theorems, which are derived from Lemma
3.1.

Theorem 3.2. Let Dj, j = 1 and 2, be a star-shaped domain with respect to
the origin so that either D1 = D2 or if D1 	= D2, then there exists a partition
0 ≤ t1 < t2 < · · · < t2n < 2π , n ≥ 1, of the interval [0, 2π] such that

(i) t2 − t1 = · · · = t2n+1 − t2n (mod 2π),
(ii) S(t2k−1; t2k) ⊂ D1 and S(t2k; t2k+1) ⊂ D2 for k = 1, · · · , n,
(iii) (D1 ∪D2) = ∪2n

i=1S(ti; ti+1),
(3.7)

where S(ti; ti+1) := (D1 ∪ D2) ∩ {(r cos θ, r sin θ) ∈ R
2|θ ∈ (ti; ti+1) and r > 0}

and 2n+ 1 is interpreted as 1. If ΛD1(g) = ΛD2(g), then D1 = D2.

Proof. Suppose that D1 	= D2. Taking a suitable rotation, if necessary, we may
assume that

t1 = 0.

Let us take an open disk B containing D1 ∪D2 and centered at the origin, and
let v the unique solution of the Dirichlet problem to an elliptic equation{

∆v = pv in B
v(r cos θ, r sin θ) = sinnθ on ∂B.

(3.8)
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S(t4; t5)

θ = t1(= t5)θ = t2

θ = t3 θ = t4

∂D1∂D2

Figure 2. Non-symmetric case (n = 2)

It follows from the symmetry of the equation (3.8) and the maximum principle
that

v > 0 in S(t2k−1; t2k) ⊂ D1,
and v < 0 in S(t2k; t2k+1) ⊂ D2 for k = 1, · · · , n. (3.9)

Therefore, by (2.2), (3.9) and Lemma 3.1, we have

0 <

∫
D1\D2

u2v dx =

∫
D2\D1

u1v dx < 0,

which is a contradiction. Thus the proof of Theorem 3.2 is complete.

We add that Theorem 2.1 in [12] deals with the case where n = 1, so Theorem
3.2 can be thought of as a generalization of it. The next theorem tells us, in
particular if n = 2, that the first condition of (3.7) can be relaxed. See Figure 2.

Theorem 3.3. Let Dj, j = 1 and 2, be a star-shaped domain with respect to
the origin so that either D1 = D2 or if D1 	= D2, then there exists a partition
0 ≤ t1 < t2 < t3 < t4 < 2π of the interval [0, 2π] such that

(i) t2 − t1 = t4 − t3 and t3 − t2 = t1 − t4 (mod 2π)
(ii) S(t1; t2) ∪ S(t3; t4) ⊂ D1 and S(t2; t3) ∪ S(t4; t1) ⊂ D2

(iii) (D1 ∪D2) = ∪4
i=1S(ti; ti+1).

If ΛD1(g) = ΛD2(g), then D1 = D2.
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Proof. Suppose that D1 	= D2. Taking a suitable rotation, if necessary, we may
assume that

t1 = 0.

If t2 = π
2
, then t3 − t2 = π

2
, and so it follows from Theorem 3.2 that D1 = D2. So

we may assume that

t2 	= π

2
and 0 < t2 < π.

To orthogonalize two independent lines {x2 = 0} and {(r cos θ, r sin θ) ∈ R
2|θ =

t2, t4 and r ≥ 0}, we introduce a transformation Ψ from the x1x2−plane into the
η1η2−plane

Ψ(x1, x2) := ((tan t2)x1 − x2, | sec t2|x2).

Then the transformation Ψmaps the line {(r cos θ, r sin θ) ∈ R
2|θ = t2, t4, and r ≥

0} in the x1x2−plane onto the line {η1 = 0} in the η1η2−plane, and the line{x2 =
0} onto the line {η2 = 0}. Defining Y (η1, η2) := y ◦ Ψ−1(η1, η2) in Ψ(D1 ∪D2),
we see that the function Y satisfies

∆ηY − 2

| sec t2|∂η1∂η2Y =
1

sec2 t2
(∂2

x1
y + ∂2

x2
y) ◦Ψ−1 in Ψ(D1 ∪D2) (3.10)

and

Y = |∇Y | = 0 on Ψ(∂(D1 ∪D2)), (3.11)

where ∆η = ∂2
η1

+ ∂2
η2
. Let us take an open disk containing Ψ(D1 ∪D2) and

centered at the origin, and let V the unique solution of the Dirichlet problem in
an elliptic equation

{
∆ηV − 2

| sec t2|∂η1∂η2V = p
sec2 t2

V in B

V (η1, η2) = V (r cos θ, r sin θ) = sin 2θ on ∂B.
(3.12)

The symmetry of the equation (3.12) and the maximum principle imply that

V > 0 in Ψ(S(0; t2)) ∪Ψ(S(t3; t4)),
and V < 0 in Ψ(S(t2; t3)) ∪Ψ(S(t4; 2π)).

(3.13)
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Setting Uj = uj ◦ Ψ−1, j = 1 and 2, in Ψ(D1 ∪D2), then (3.10), (3.11), (3.13)
and the Green theorem we have

0

= p
sec2 t2

∫
Ψ−1(D1\D2)

U1V dη + p
sec2 t2

∫
Ψ−1(D1∩D2)

Y V dη − p
sec2 t2

∫
Ψ−1(D2\D1)

U2V dη

+ 2
| sec t2|

∫
Ψ−1(D1∪D2)

(∂η1∂η2Y )V dη − ∫
Ψ−1(D1∪D2)

(∆ηY )V dη

= p
sec2 t2

∫
Ψ−1(D1\D2)

U2V dη − p
sec2 t2

∫
Ψ−1(D2\D1)

U1V dη + p
sec2 t2

∫
Ψ−1(D1∪D2)

Y V dη

+ 2
| sec t2|

∫
Ψ−1(D1∪D2)

Y (∂η1∂η2V ) dη − ∫
Ψ−1(D1∪D2)

Y (∆ηV ) dη

= p
sec2 t2

∫
Ψ−1(D1\D2)

U2V dη − p
sec2 t2

∫
Ψ−1(D2\D1)

U1V dη.

(3.14)

However (3.13) implies that the right hand side of (3.14) is strictry positive,
which is a contradiction. Therefore we can conclude that D1 = D2.

Theorem 2.2 in [12] deals also with the case where n = 2, yet it requires a strong
restriction on domains that there exist two pairs of two parallel lines seperating
D1 \ D2 from D2 \ D1. So this restriction has, for example, ellipses have the
common center for uniqueness. Through Theorem 3.3, we can obtain the global
uniqueness within general ellipses. From this standpoint, Theorem 3.3 can be
considered as a generalization of Theorem 2.2 in [12].

4. Convex Case

In this section, we consider convex domains D, E and regard them as star-
shaped domains with respect to the origin. Since any convex bounded domains
D,E ⊂ R

2 with D ∩E 	= ∅ can be regarded as star-shaped domains with respect
to any point in D ∩ E, our assumption is resonable. That is, ∂D is assumed to
be represented by the continuous closed curve α : [0, 2π] → ∂D ;

α(θ) = (r(θ) cos θ, r(θ) sin θ) and 0 < r(θ) for all θ ∈ [0, 2π].

Now let us introduce some reflection condition on convex domains.

Definition 4.1. For convex domains D and E in R
2 containing the origin with

boundaries, respectively, α(θ) = (r(θ) cos θ, r(θ) sin θ) and β(θ) = (ρ(θ) cos θ,
ρ(θ) sin θ), they are said to satisfy the inward reflection condition if α(θ1) =
β(θ1), α(θ2) = β(θ2) for 0 ≤ θ1 < θ2 ≤ 2π and r(θ) ≥ ρ(θ) (or r(θ) ≤ ρ(θ)) for
all θ ∈ (θ1, θ2), then the reflection of α(θ1, θ2) := {α(θ)|θ ∈ (θ1, θ2)} (or β(θ1, θ2))
with respect to the line L(θ1, θ2) passing through α(θ1) and α(θ2) is contained in
D ∩E.
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θ = θ1

L(θ1, θ2)

α(θ1, θ2)

θ = θ2

O

∂D : α(θ)

∂E : β(θ)

Figure 3. The inward reflection condition

The next theorem shows the global uniqueness result of our inverse problem
within convex domains satisfying the inward reflection condition.

Theorem 4.2. Let Dj, j = 1 and 2, be a convex subdomain of Ω containing the
origin with boundary αj(θ) = (rj(θ) cos θ, rj(θ) sin θ). If D1 and D2 satisfy the
inward reflection condition, then ΛD1(g) = ΛD2(g) yields D1 = D2.

Proof. Suppose that D1 	= D2. It is easy from Lemma 3.1 to see that

D1 \D2 	= ∅ and D2 \D1 	= ∅.
Then since D1 and D2 satisfy the inward reflection condition, there exists a
partition 0 ≤ t1 < t2 < · · · < t2n < 2π, n ≥ 1, of the interval [0, 2π] such that

(i) α1(ti) = α2(ti) for i = 1, · · · , 2n
(ii) r1(θ) ≥ r2(θ) , θ ∈ (t2k−1, t2k)

and r1(θ) ≤ r2(θ) , θ ∈ (t2k−1, t2k) for k = 1, · · · , n,
where 2n+1 is interpreted as 1. Taking a suitable rotation, if necessary, we may
assume that

t1 = 0.

Let us fix a sufficiently small ε > 0 and set

Γ1
k := L(t2k−1 + ε, t2k − ε) ∩D1

and Γ2
k := L(t2k + ε, t2k+1 − ε) ∩D2 for k = 1, · · · , n.

Let us take a convex domain D0 with smooth boundary so that

(i) ∪n
k=1(Γ

1
k ∪ Γ2

k) ⊂ ∂D0,
(ii) ∂D0 \ ∪n

k=1(Γ
1
k ∪ Γ2

k) ⊂ Ω \ (D1 ∪D2).
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Let us fix any positive λ ∈ R and let v be a solution in H1(D0) of the elliptic
equation



∆v = pv in D0,

v = (−1)j+1λ on Γj
k, j = 1, 2 and k = 1, · · · , n,

|v| ≤ λ on ∂D0,
v ∈ C2,α(∂D0) for some 0 < α < 1.

(4.1)

Since ∂D0 is smooth, we see (e.g., [4, 11]) that

v ∈ C2(D0). (4.2)

To extend the function v, we need to introduce some notaions. For j = 1,
2 and k = 1, · · · , n, let us denote by Dj

k the subdomain of Dj with ∂Dj
k =

αj(tm(j,k) + ε, tm(j,k)+1 − ε) ∪ Γj
k and by nj

k the unit outward normal vector to

Γj
k ⊂ ∂D0, where m(j, k) is 2k − 1 if j = 1 and 2k if j = 2. We are going to

extend the function v by

vE(x) =




v(x), if x ∈ D0

−v(xj
k − |x− xj

k|nj
k) + 2λ(−1)j+1 cosh

√
p|x− xj

k|,
if x ∈ Dj

k for j = 1, 2 and k = 1, · · · , n,
(4.3)

where xj
k is the orthogonal projection of x ∈ Dj

k onto Γj
k for j = 1, 2 and

k = 1, · · · , n. Since D1 and D2 satisfy the inward reflection condition, if ε is
sufficiently small, then vE is well-defined. If x ∈ Γj

k for j = 1, 2 and k = 1, · · · , n,
then x = xj

k, and so by (4.1) we have

limy→x and y∈Dj
k
[−v(yj

k − |y − yj
k|nj

k) + 2λ(−1)j+1 cosh
√
p|y − yj

k|]
= −v(x) + 2λ(−1)j+1

= v(x).

(4.4)

Therefore (4.2) - (4.4) imply that

vE ∈ C(D1 ∪D2). (4.5)

Since |v| ≤ λ on ∂D0, the maximum principle says that

|v| ≤ λ in D0. (4.6)

For k = 1, · · · , n, by (4.3) and (4.6) we obtain for any x ∈ D1
k

vE(x) ≥ −λ+ 2λ cosh
√
p|x− x1

k|
≥ λ exp(−√

p|x− x1
k|)

> 0,
(4.7)

and for any x ∈ D2
k

vE(x) ≤ λ− 2λ cosh
√
p|x− x2

k|
≤ −λ exp(−√

p|x− x2
k|)

< 0.
(4.8)
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Next I claim that for j = 1, 2 and k = 1, · · · , n we have

∂vE

∂nj
k

∣∣∣∣∣
+

(x) =
∂vE

∂nj
k

∣∣∣∣∣
−
(x) , x ∈ Γj

k, (4.9)

where ∂vE

∂nj
k

∣∣∣
+
(x) = limh↓0

vE(x+hnj
k)−vE(x)

h
and ∂vE

∂nj
k

∣∣∣
−
(x) = limh↓0

vE(x)−vE(x−hnj
k)

h
.

In fact, since x− hnj
k ∈ D0 and vE = v on D0, we have

∂vE

∂nj
k

∣∣∣∣∣
−
(x) = lim

h↓0
v(x)− v(x− hnj

k)

h
=

∂v

∂nj
k

(x) , x ∈ Γj
k. (4.10)

On the other hand, the direct calculation shows that for x ∈ Γj
k

∂vE

∂nj
k

∣∣∣
+
(x) = limh↓0

vE(x+hnj
k)−vE(x)

h

= limh↓0
−v(x−hnj

k)+2λ(−1)j+1 cosh
√

ph−v(x)

h

= limh↓0
v(x)−v(x−hnj

k)

h
+ limh↓0

2λ(−1)j+1 cosh
√

ph−2v(x)

h

= limh↓0
v(x)−v(x−hnj

k)

h

= ∂v

∂nj
k

(x).

(4.11)

Thus by (4.10) and (4.11), (4.9) has been proved. Finally I will prove that
∆vE = pvE in (D1 ∪D2). Since vE = v on D0, it suffices to show that

∆vE = pvE in Dj
k for j = 1, 2 and k = 1, · · · , n. (4.12)

Let us fix any j = 1, 2 and k = 1, · · · , n. Taking a suitable rotation and transla-
tion, if necessary, we may assume that

nj
k = (1, 0) and Γj

k ⊂ {x1 = 0}.
Then for x = (x1, x2) ∈ Dj

k we have

vE(x) = −v((0, x2)− (x1, 0)) + 2λ(−1)i+1 cosh
√
px1

= −v(−x1, x2) + 2λ(−1)i+1 cosh
√
px1,

so

∆vE(x) = −∆v(−x1, x2) + 2pλ(−1)i+1 cosh
√
px1

= −pv(−x1, x2) + 2pλ(−1)i+1 cosh
√
px1

= pvE(x).
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Since j and k are chosen arbitrily, the proof of (4.12) is complete. Therefore by
Lemma 3.1 we have ∫

D1\D2

u2vE dx =

∫
D2\D1

u1vE dx (4.13)

and
n∑

k=1

∫
D1

k

u2vE dx +

∫
(D1\D2)∩D0

u2vE dx =

n∑
k=1

∫
D2

k

u1vE dx+

∫
(D2\D1)∩D0

u1vE dx.

(4.14)

Since |(D1 \ D2) ∩ D0| + |(D2 \ D1) ∩ D0| = O(ε) and vE ≤ λ, (4.7) and (4.8)
say that the left hand side of (4.14) is strictly positive and the right hand side of
(4.14) is strictly negative, which is a contradiction. Thus the proof of Theorem
4.2 is complete.

Unfortunately, Theorem 4.2 does not say the global uniqueness within general
convex domains. Theorem 3.2, 3.3 and 4.2, however, cover pretty large portion
of the class of convex domains. The measure |D1 \D2| + |D2 \D1| is smaller as
n is larger.
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