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Abstract. We establish the uniqueness and conditional stability in determining a

heat source term from boundary measurements which are started after some time.

The key is analyticity of solutions in the time and we apply the maximum principle

for analytic functions.

x1. Introduction.

We consider an initial/boundary value problem for the the two-dimensional heat

equation :

(1.1)

8>>>>>>>>>>><>>>>>>>>>>>:

@u

@t
(x1; x2; t) = �u(x1; x2; t)

+ �(t)f(x1 ; x2); (x1; x2) 2 
; 0 < t < T;

u(x1; x2; 0) = 0; (x1; x2) 2 
;

@u

@n
(x1; x2; t) = 0; (x1; x2) 2 @
; 0 < t < T:

Here 
 � R2 is the rectangle: 
 = (0; 1) � (0; 1) and x = (x1; x2) 2 R2, � is the

Laplacian. The non-homogeneous term �(t)f(x1 ; x2) is considered as a heat source,

and in the case of �(t) = e��t with � > 0, system (1.1) describes a heat process

where a radioactive isotope with the decay rate � supplies heat, whose spatial

density is given by f(x1; x2), (x1; x2) 2 
. Especially in the case of �(t) = e��t,
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2 M. CHOULLI AND M. YAMAMOTO

system (1.1) corresponds to a simple thermal model of the earth where the high

temperature inside results from the decay of a radioactive isotope (e.g., Lavrentiev,

Romanov and Vasiliev [6]).

For f 2 L2(
) and � 2 C[0; T ], there exists a unique mild solution u 2

C([0; T ];L2(
)) to (1.1), and we denote it by u = u(f) (e.g., Pazy [10], Tanabe

[11]) provided that � is �xed.

For a given � > 0, our problem is determination of f from

u(f)(x1; 0; t) = h(x1; t); 0 < x1 < 1; � < t < T;

and we here discuss the uniqueness and the stability.

In the case of � = 0, in other words, if we can observe the temperature from the

initial time t = 0, then we refer to Lavrentiev, Romanov and Vasiliev [6] for the

uniqueness, to Cannon [2], Yamamoto [12], [13] for the conditional stability under

a priori bound of f with Sobolev norm of higher order.

The purpose of this paper is to discuss the uniqueness and the conditional stabil-

ity in the case of � > 0. In particular, when we relate the determination problem of

a heat source with a problem in geophysics proposed by Tikhonov (see Lavrentiev,

Romanov and Vasiliev [6], pp.49-50), it is natural to assume that � > 0, that is,

the observation should be started after some time passing.

The key is the analyticity of solutions in t, and our main result on the conditional

stability is proved by means of the result in Yamamoto [12], [13] and the maximum

principle for analytic fucntions.

x2. Main results.
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Throughout this paper, f and � are real-valued and so u(f)(x1; x2; t) is real for

(x1; x2) 2 
 and 0 � t � T .

We de�ne an operator A in L2(
) by

(Au)(x) = ��u(x); x = (x1; x2) 2 


D(A) = fu 2 H2(
);
@u

@n

����
@


= 0 g:(2.1)

Let k�k denote the norm in L2(
), and H�(
), � > 0, denote a usual Sobolev space

(e.g., Adams [1]). We �x 
 > 0. Then we can de�ne a fractional power (A + 
)�,

� 2 R (e.g., Pazy [10], Tanabe [11]) and

(2.2) D((A + 
)�) = H2�(
); 0 < � <
3

4

and there exists a constant C1 > 0 such that

C�1
1 kukH2�(
) � k(A+ 
)�uk �C1kukH2�(
);

u 2 D((A + 
)�)(2.3)

(e.g., Fujiwara [4]). We set

(2.4) S� = fz 2 C ; 0 < jzj < T; j arg zj < �g

with � 2 (0; �2 ].

Now we are ready to state our main results.

Theorem 1 (Uniqueness). Let us assume

� 2 C1[0; T ] is extended analytically to S� with some � 2 (0;
�

2
] ; �(0) 6= 0;

sup
z2S�

����dk�dzk
(z)

���� <1; k = 0; 1

(2.5)
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and let 0 < � < T be given arbitrarily. Moreover � = @
 \ fx; jx � x0j < �g with

some x0 2 R
2 and � > 0, and we assume that � 6= ;. Then u(f)(x1; x2; t) = 0,

(x1; x2) 2 �, � < t < T with f 2 L2(
) implies f(x1; x2) = 0, (x1; x2) 2 
.

Theorem 2 (Conditional Stability). Let M > 0 and

(2.6) 1 > � >
1

4
;

and we set

(2.7) UM;� = ff 2 D((A + 
)�); k(A + 
)�fk �Mg:

We assume (2.5). Let 0 < � < T be given arbitrarily. Then for 0 < � < �, there

exists a constant C > 0 depending on �, M , � and � such that

(2.8) kfk � C

0@ 1

log log
�

1
ku(f)(�;0;�)kL2((�;T )�(0;1))

�
1A�

for f 2 UM;�.

Here we set

ku(f)(�; 0; �)kL2((�;T )�(0;1)) =

 Z T

�

Z 1

0

ju(f)(x1; 0; t)j
2dx1dt

! 1
2

:

By the regularity property for the parabolic equation, we cannot expect any conti-

nuity of the map u(f)(�; 0; �) 7�! f from L2((�; T )� (0; 1)) to L2(
) if for unknown

f , we do not assume a priori bound such as UM;�. In the case of � = 0, a single

logarithmic stability is proved in Yamamoto [12]. More precisely,

Theorem 0. ( [12]) Let M > 0, � > 0 and T > 0 be given arbitrarily, and

� 2 C1[0; T ] such that �(0) 6= 0. Then for 0 < � < �, there exists a constant C > 0

depending on �, M , � and � such that

kfk � C

0@ 1

log
�

1
ku(f)(�;0;�)kH1(0;T ;L2(0;1))

�
1A�
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for f 2 UM;�.

Here we set

ku(f)(�; 0; �)kH1(0;T ;L2(0;1)) =

 Z T

0

Z 1

0

ju(f)(x1; 0; t)j
2 +

����@u(f)@t
(x1; 0; t)

����2 dx1dt
! 1

2

:

In this paper, we take the rectangle as 
, but we can obtain similar results for

a general domain.

x3. Analyticity of solutions.

We show

Lemma 1. Let (2.5) be satis�ed and let 0 < � < 1. We can extend (A +


)�u(f)(�; �; t) analytically to a map S� �! L2(
). Moreover there exists a constant

C2 = C2(�; T; �) > 0 such that

(3.1) k(A+ 
)�u(f)(�; �; z)k � C2kfk; z 2 S�:

Proof. Since �A generates an analytic semigroup in Re z > 0 (e.g., [10], [11]), we

can de�ne U(z) by

U(z) =

Z
0z

(A + 
)�e�(z�s)A�(s)fds

=

Z
0z

(A+ 
)�e�sA�(z � s)fds(3.2)

where the integration is done along the segment in C connecting 0 and z 2 C . We

will prove that U(z) is di�erentiable in z 2 S� � C . We set

(3.3) U�(z) =

Z
�z

(A+ 
)�e�sA�(z � s)fds

for small � > 0. First we note

(3.4) k(A + 
)�e��Ak � C3j�j
��; � 2 S�
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(e.g., [10], [11], Hayden and Massey [5], p.429). Therefore U�(z) is well-de�ned in

L2(
) for all z 2 S�. Since

dU�

dz
(z) = (A + 
)�e�zA�(0)f

+

Z
�z

(A + 
)�e�sA
d�

dz
(z � s)fds;

we see that U� : S� �! L2(
) is analytic. Furthermore, by (3.4), we have





Z
0�

(A + 
)�e�sA�(z � s)fds





 = 



Z �

0

(A+ 
)�e��zA�(z � �z)zfd�






�

Z �

0

k(A+ 
)�e��zAd�jzjk�kL1(S�)kfk

�C3

Z �

0

���d�jzj1��k�kL1(S�)kfk = C3
�1��

1� �
jzj1��k�kL1(S�)kfk:

(3.5)

The right hand side tends to 0 as � # 0, so that

lim
�#0





Z
0�

(A + 
)�e�sA�(z � s)fds





 = 0

in L2(
) and the convergence is uniform for z in any compact subset in S�. Since

U� : S� �! L2(
) is analytic, we see that U : S� �! L2(
) is analytic. Finally we

can prove (3.1) similarly to (3.5).

Next, taking � 2
�
1
4 ; 1
�
in Lemma 1, by the trace theorem, we can easily derive

Lemma 2. We can extend u(f)(�; �; t) analytically to a map S� �! L2(@
) and

ku(f)(�; �; z)kL2(@
) � C2kfk; z 2 S�:

x4. Proof of Theorem 1.

By Lemma 2, u(f)(x1 ; x2; t) = 0 for (x1; x2) 2 � and � < t < T implies

(4.1) u(f)(x1 ; x2; t) = 0; (x1; x2) 2 �; 0 < t < T:
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On the other hand, by the variation of constants, we have

(4.2) u(f)(x1; x2; t) =

Z t

0

�(t� s)w(x1; x2; s)ds; (x1; x2) 2 
; 0 < t < T;

where w(x1; x2; t) satis�es

(4.3)

8>>>>>><>>>>>>:

@w

@t
(x1; x2; t) = �w(x1; x2; t); (x1; x2) 2 
; 0 < t < T;

w(x1; x2; 0) = f(x1; x2); (x1; x2) 2 
;

@w

@n
(x1; x2; t) = 0; (x1; x2) 2 @
; 0 < t < T:

In fact, by direct calculations, we can verify that the right hand side of (4.2) satis�es

(1.1). Apply (4.1) in (4.2), and we obtain

(4.4)

Z t

0

�(t � s)w(x1; x2; s)ds = 0; (x1; x2) 2 �; 0 < t < T:

Therefore we can di�erentiate the both hand sides of (4.4) in t, and we obtain

�(0)w(x1; x2; t)+

Z t

0

d�

dt
(t� s)w(x1; x2; s)ds = 0;

(x1; x2) 2 �; 0 < t < T:(4.5)

For f 2 L2(
), in general, wj� is not in L2(�� (0; T )), and for verifying w = 0 on

�� (0; T ), we will proceed as follows. Let us �x 1
2
< � < 1. Then

(4.6) bw � t�wj� 2 C([0; T ];H
1
2 (�)):

In fact, let F (t) = t�e�tAf . Then

(A + 
)
1
2 (F (t + h)� F (t))

=((t + h)� � t�)(A + 
)
1
2 e�(t+h)Af

+t�(A + 
)
1
2 e�tA(e�hAf � f);
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and

k(A + 
)
1
2 (F (t + h)� F (t))k � C4(h

��1=2 + ke�hAf � fk)

by (3.4). Therefore

lim
h!0

k(A + 
)
1
2 (F (t + h)� F (t))k = 0

for t 2 [0; T ]. Since D((A + 
)
1
2 ) = H1(
), the trace theorem implies (4.5).

Setting

k(t; s) =
1

�(0)
t�s��

d�

dt
(t � s);

we see that (4.5) is equivalent to

(4.7) bw(t) + Z t

0

k(t; s) bw(s)ds = 0; 0 � t � T:

For any � 2 L2(�), we set v(t) = ( bw(t); �)L2(�). Then by (4.6), we see that

v 2 C[0; T ], and equality (4.7) yields

(4.8) v(t) = �

Z t

0

k(t; s)v(s)ds; 0 � t � T:

Set M1 = kvkC[0;T ]. Since jk(t; s)j � C5t
�s��, by (4.8), we obtain

(4.9) jv(t)j �M1C5
t

1� �
; 0 � t � T:

Apply (4.9) at the right hand side of (4.8), we have

jv(t)j �
M1C

2
5 t

2

(1 � �)(2� �)
; 0 � t � T:

Continuing this argument, for n 2 N, we see

jv(t)j �
M1C

n
5 t

n

(1� �)(2� �) � � � (n� �)

�
M1(C5T )n

(1� �)(2 � �) � � � (n � �)
; 0 � t � T:
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Since

lim
n!1

(C5T )n

(1 � �)(2� �) � � � (n� �)
= 0;

we have v(t) = ( bw(t); �)L2(�) = 0, 0 � t � T . Since � 2 L2(�) is arbitrary, this

implies that bw(t) = t�wj� = 0, 0 � t � T . Thus wj� = 0 on �� (0; T ).

Therefore application of the unique continuation theorem (e.g., Mizohata [8], [9])

to (4.3) yields w(x1; x2; t) = 0, (x1; x2) 2 
, 0 < t < T . For the application of the

unique continuation, we note that w 2 C2(
�(0; T )), by the smoothing property in

(4.3) (e.g., [10]). Consequently f(x1; x2) = w(x1; x2; 0) = 0, (x1; x2) 2 
, follows.

Thus the proof of Theorem 1 is complete.

x5. Proof of Theorem 2.

Without loss of generality, we may assume that ku(f)(�; 0; �)kL2((�;T )�(0;1)) is suf-

�ciently small for M > 0 and S�. We divide the proof into the following four

steps.

Let us choose � > 0 such that 1
4 < � < � and �� � is suÆciently small.

First Step. We show: There exists a constant C6 > 0 such that

(5.1) k(A + 
)�u(f)kC1([0;T ];L2(
)) � C6k(A + 
)�fk; f 2 D((A + 
)�):

Proof of (5.1). We have

(5.2) u(f)(�; t) =

Z t

0

e�(t�s)A�(s)fds; t > 0;

so that

(A+ 
)�u(f)(�; t) =

Z t

0

e�(t�s)A�(s)(A + 
)�fds; t > 0:
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We set g = (A+ 
)�f 2 L2(
). Then

(A + 
)�u(f)(�; t)

=

Z t

0

e�(t�s)A(�(s) � �(t))gds +

�Z t

0

e�sAds

�
�(t)g

�S1(t) + S2(t):(5.3)

Since � 2 C1[0; T ] and (3.4) with � = 1, we have

dS1

dt
(t) =

Z t

0

�Ae�(t�s)A(�(s) � �(t))gds �

Z t

0

e�(t�s)A d�

dt
(t)gds

and

kS1kC1([0;T ];L2(
)) � C 0
6kgk:

Next, since

dS2

dt
(t) = e�tA�(t)g +

Z t

0

e�sAds
d�

dt
(t)g; 0 < t < T;

we see kS2kC1([0;T ];L2(
)) � C 0
6kgk. Thus (5.1) is seen.

Second we will prove

(5.4) k(A+ 
)�u(f)kC2([0;T ];L2(
)) � C7k(A + 
)�+1fk; f 2 D((A + 
)�+1):

Proof of (5.4). By (5.2) and f 2 D((A + 
)�+1), we have

du(f)

dt
(t) = �

Z t

0

e�(t�s)A�(s)Afds + �(t)f;

so that

(A + 
)�
du(f)

dt
(t) = �

Z t

0

e�(t�s)A�(s)(A + 
)�Afds

+�(t)(A + 
)�f; 0 � t � T:(5.5)

We apply an argument similar to (5.3) to the �rst term at the right hand side of

(5.5) and use (2.5) in the second term, and the proof of (5.4) is complete.
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Second Step. We recall that

(5.6)
1

4
< � < 1:

De�ne an operator K by

Kf = (A + 
)�u(f):

Therefore noting that C2([0; T ];L2(
)) � H2(0; T ;L2(
)) and C1([0; T ];L2(
)) �

H1(0; T ;L2(
)), we see from (5.1) and (5.4) that

K : D((A + 
)�+1) �! H2(0; T ;L2(
))

and

K : D((A + 
)�) �! H1(0; T ;L2(
))

are bounded. Therefore by the interpolation theorem (e.g., Lions and Magenes [7,

Vol.I, p.27]), we have

K : [D((A+
)�+1);D((A+
)� )]1+��� �! [H2(0; T ;L2(
));H1(0; T ;L2(
))]1+���

is a bounded operator. Here by (5.6) we note that 0 < 5
4 � � < 1. Again by the

interpolation theorem: Theorem 6.1 (Vol.I, p.28) and (2.7) (Vol.II, p.8) in [7], we

see

[H2(0; T ;L2(
));H1(0; T ;L2(
))]1+��� = H���+1(0; T ;L2(
)):

On the other hand, we have

[D((A + 
)�+1);D((A + 
)�)]1+��� = D((A + 
)�)

(e.g., [7, Vol.I]).

Recalling that 1
4 < � < � < 1, we note that � � � > 0. Consequently, by the

trace theorem and � > 1
4 , we obtain

(5.7) ku(f)(�; 0; �)kH1+���(0;T ;L2(0;1)) � C8k(A + 
)�fk; f 2 D((A + 
)�):
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Third Step. Let � > 1
4 and f 2 UM;�. Then we will prove

(5.8) kfk � C

0@ 1

log
�

1
ku(f)(�;0;�)kL2((0;T )�(0;1))

�
1A�

:

Since

[H1+���(0; T ;L2(0; 1)); L2(0; T ;L2(0; 1))] ���
1+���

= H1(0; T ;L2(0; 1))

(e.g., Proposition 2.1 (p.7) in [7], Vol. II), we have

ku(f)(�; 0; �)kH1(0;T ;L2(0;1))

�C9ku(f)(�; 0; �)k
1

1+���

H1+���(0;T ;L2(0;1))
ku(f)(�; 0; �)k

���
1+���

L2(0;T ;L2(0;1))

(e.g., Proposition 2.3 (p.19) in [7], Vol I). Therefore

ku(f)(�; 0; �)kH1(0;T ;L2(0;1))

�C9 (C8k(A + 
)�fk)
1

1+��� ku(f)(�; 0; �)k
���

1+���

L2(0;T ;L2(0;1))

�C9(M)ku(f)(�; 0; �)k
���

1+���

L2 (0;T ;L2(0;1))(5.9)

by f 2 UM;� and (5.7). Application of (5.9) in Theorem 0 yields (5.8).

Fourth Step. We set

(5.10) �(z) =

Z 1

0

u(f)(x1 ; 0; z)
2dx1; z 2 S�:

Here we notice that u(f)(x1; 0; z)2 is not necessarily non-negative for z 62 R, but

u(f)(x1; 0; t)2 � 0 for 0 � t � T , because f is real-valued and so is u(f)(x1; 0; t).

By Lemma 2 and f 2 UM;�, we see that

(5.11) � is analytic in S�
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and

(5.12) j�(z)j � C10M; z 2 S�:

Here C10 > 0 depends only on � and T , �. In view of (5.11) and (5.12), we can

apply the method by the harmonic measure for estimating analytic functions (e.g.,

Corollary 10.6.1 (p.126) in Cannon [3]), so that there exists � 2 (0; 1) depending

on S�, � and T such that

(5.13) j�(t)j � C11M�C11t
1=�

; 0 � t � �

where we set

� = sup
��t�T

j�(t)j = ku(f)(�; 0; �)k2L1(�;T ;L2(0;1)):

Since u(f)(x1 ; 0; t) 2 R for 0 � x1 � 1 and � � t � T , by the Sobolev embedding

theorem and the interpolation inequality (e.g., Theorem 6.1 (Vol.I, p.28) and (2.7)

(Vol.II, p.8) in Lions and Magenes [7]), we have

� � C 0
12ku(f)(�; 0; �)k

2
H1(�;T ;L2(0;1))

�C12ku(f)(�; 0; �)k
2

1+���

H1+���(�;T ;L2(0;1))
ku(f)(�; 0; �)k

2(���)
1+���

L2((�;T )�(0;1)):

In view of (5.7), we obtain

(5.14) � � C13 (C8k(A + 
)�fk)
2

1+��� ku(f)(�; 0; �)k
2(���)
1+���

L2((�;T )�(0;1)):
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Therefore, by (5.13) and (5.14), we see

ku(f)(�; 0; �)k2L2((0;�)�(0;1)) =

Z �

0

j�(t)jdt � C11M

Z �

0

�C11t
1=�

dt

=C11M�

Z �1=�

0

s��1 exp

�
�(C11 log

1

�
)s

�
ds

�C11M�

Z 1

0

s��1 exp

�
�(C11 log

1

�
)s

�
ds

=C11M� �
�(�)

C�
11

�
log

1

�

���
�

C14�
log
�

1
ku(f)(�;0;�)kL2((�;T )�(0;1))

���
where we note that ku(f)(�; 0; �)kL2 ((�;T )�(0;1)) is assumed to be suÆcienttly small

for S� and �. Therefore we can take constants C15 > 0 and � > 0 depending only

on �, �, T , � such that

ku(f)(�; 0; �)kL2 ((0;T )�(0;1))

�
C15�

log
�

1
ku(f)(�;0;�)kL2((�;T )�(0;1))

��� :(5.15)

Application of (5.15) in (5.8) yields the conclusion (2.8). Thus the proof of Theorem

2 is complete.
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