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MICROSUPPORT OF WHITNEY SOLUTIONS
TO SYSTEMS WITH REGULAR SINGULARITIES

AND ITS APPLICATIONS

SUSUMU YAMAZAKI

Abstract. For systems of holomorphic linear differential equation with regular singu-
larities in the sense of Kashiwara-Oshima, it is obtained that the bound to microsupport
of the solution complex of the formal cohomology associated with constructible sheaf
due to Kashiwara-Schapira. As applications, hyperbolic Cauchy and boundary value
problems are considered for Whitney functions.

Introduction.

In algebraic analysis, a system of holomorphic linear differential equations on a complex

manifold X is nothing but a (left) coherent Module M over the Ring DX of holomorphic

linear differential operators (in this paper, we shall write Module or Ring with capital

letters, instead of sheaf of modules or sheaf of rings). Let F be a complex of sheaves on X

with R-constructible cohomologies (we fix the field C of complex numbers as a base ring).

Then the complex of generalized functions associated with F is given by RH om
CX

(F,OX),

and corresponding solution sheaf complex is RH omDX
(M , RH om

CX
(F,OX)). Let us

denote by SS(F ) the microsupport of F due to Kashiwara-Schapira (see [K-S 2]). Then it

is known that

SS
(
RH omDX

(M , RH om
CX

(F,OX))
)
⊂ char(M ) +̂ SS(F )a

(see § 1 for the notation) and various results can be obtained from this estimate. Next, we

replace RH om
CX

(F,OX) by TH om(F, OX) of the moderate cohomology or F
w
⊗OX of the

formal cohomology ([K-S 3]). Then, the estimate above does not hold in general. However

in a recent paper [MF-K-S], Monteiro Fernandes-Kashiwara-Schapira showed that if M

has regular singularities along a regular involutory complex subbundle V of T ∗X in the

sense of Kashiwara-Oshima [K-O], then it follows that

SS
(
RH omDX

(M , TH om(F, OX))
)
⊂ V +̂ SS(F )a.

In this paper, we shall show that by the same methods and conditions as in [MF-K-S]

SS
(
RH omDX

(M , F
w
⊗OX)

)
⊂ V +̂ SS(F )

holds. Moreover as applications, we shall show unique solvability theorems for Cauchy and

boundary value problems for Whitney functions under a kind of hyperbolicity condition.
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We remark that the results in this paper may be generalized by the theory of ind-sheaves

recently developed by Kashiwara-Schapira (cf. [K-S 4]).

1. Review and Preliminaries.

In this section, we shall fix the notation and recall results used in later sections. General

references are made to Kashiwara-Schapira [K-S 2].

We denote by Z, R and C the sets of integers, of real numbers and of complex numbers

respectively. Further we set N := {n ∈ Z; n � 1} ⊂ N0 := N ∪ {0}, R>0 := {t ∈ R; t >

0} ⊂ R�0 := {t ∈ R; t � 0} and C
× := C \ {0}.

For a topological space S and a subset A ⊂ S, we denote by Cl A and Int A the closure

and interior of A respectively.

In this paper, all the manifold are assumed to be paracompact. If τ : E → Z is a

vector bundle over a manifold Z, then we set Ė := E \ Z (the zero-section removed) and

τ̇ := τ
∣∣
Ė . Let π : E∗ → Z be a dual bundle to E. We set

P+ := {(v, ξ) ∈ E ×
Z

E∗; 〈v, ξ〉 > 0}.

Let p+
1 : P+ → E and p+

2 : P+ → E∗ be the canonical projections. We denote by Db
R>0

(E)

the full subcategory of Db(E) := Db(CE) consisting of conic objects. Then the following

proposition is used to define boundary value morphisms:

1.1. Proposition ([Ud, Corollary A.2], [S-K-K, Chapter I]). For any F ∈ ObDb
R>0

(E),

there exists the following distinguished triangle:

F → τ !Rτ! F → Rp+
1∗ p+ !

2 F∧ +1−→ .

Here F∧ denotes the Fourier-Sato transform of F .

Let X be a complex manifold, τ : TX → X and π : T ∗X → X the tangent and the

cotangent bundles respectively. For conic subsets A, B ⊂ T ∗X, we set:

A + B := {(z; ζ1 + ζ2) ∈ T ∗X; (z; ζ1) ∈ A, (z; ζ2) ∈ B},
Aa := {(z; ζ) ∈ T ∗X; (z;−ζ) ∈ A},
A◦ :=

⋂
(z;ζ)∈A

{(z; v) ∈ TX; Re 〈v, ζ〉 � 0}.

Here 〈 · , · 〉 : TzX × T ∗
z X → C is the inner product. For conic subsets A, B ⊂ TX, we

shall define A + B, Aa ⊂ TX and A◦ ⊂ T ∗X as same manners.

Normal and Conormal Bundles. Let M be a closed real analytic submanifold of X,

τM : TMX → X and πM : T ∗
MX → X the normal and the conormal bundles to M in X

respectively. Let (x) = (x′, x′′) be local coordinates of X such that M is given by x′′ = 0.
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We also use (x′; x′′) as local coordinates of TMX. Let (x; ξ) be local coordinates of T ∗X

associated with (x). Then the Hamiltonian isomorphism induces isomorphisms:

(1.1)
T ∗TMX ∼ T ∗T ∗

MX ∼ TT ∗
MXT ∗X

∪| ∪| ∪|
(x′, x′′; ξ′, ξ′′) ←→ (x′, ξ′′; ξ′,−x′′) ←→ (x′, ξ′′; x′′, ξ′).

We obtain a natural embedding T ∗M ↪→ TT ∗
MXT ∗X by:

(1.2) T ∗M 
 (x′; ξ′) �→ (x′, 0; 0, ξ′) ∈ TT ∗
MXT ∗X.

For a subset S ⊂ X, we denote by CM(S) the normal cone which is a closed conic

subset of TMX given as follows: (x′
0; x

′′
0) ∈ CM(S) if and only if there exists a sequence

{(x′
n, x

′′
n; cn)}n∈N

⊂ S × R>0 such that

(1.3) (x′
n, x

′′
n) −→

n
(x′

0, 0), cnx
′′
n −→

n
x′′

0.

Let i : M ↪→ X be the natural embedding and A ⊂ T ∗X a conic subset. Then by (1.2)

we set i�(A) := T ∗M ∩ CT ∗
MX(A) ⊂ T ∗M . Note that (x′

0; ξ
′
0) ∈ i�(A) if and only if there

exists a sequence {(x′
n, x

′′
n; ξ′n, ξ

′′
n)}n∈N

⊂ A such that

(1.4) (x′
n, x

′′
n; ξ′n) −→

n
(x′

0, 0; ξ′0), |x′′
n| |ξ′′n| −→

n
0.

Diagonal Embedding Case. We denote by ∆ ⊂ X × X the diagonal set and identify

with X. Further, we identify TX with T∆(X × X) by the first projection. Similarly,

TT ∗X is identified with TT ∗
∆(X×X)T

∗(X × X). Let (x, x̃) be local coordinates of X × X.

Then X = ∆ is defined by y := x − x̃ = 0:

(1.5) X = {(x, y); y = 0} ⊂ X × X = {(x, y)}.

Let (x, y; ξ, η) be local coordinates of T ∗(X × X) associated with (x, y). Then isomor-

phisms of (1.1) are read as

(1.6)
T ∗TX ∼ T ∗T ∗X ∼ TT ∗X

∪| ∪| ∪|
(x, y; ξ, η) ←→ (x, η; ξ,−y) ←→ (x, η; y, ξ).

In view of (1.1) and (1.2), we have the inclusion:

(1.7) T ∗X ⊂ TT ∗
∆(X×X)T

∗(X × X) = TT ∗X,

which is given by (x; ξ) → (x, 0; 0, ξ). For any subsets S1, S2 ⊂ X, we set C(S1, S2) :=

C∆(S1 × S2) ⊂ TT ∗X. Further, we set

A +̂ B := T ∗X ∩ C(A, Ba) ⊂ T ∗X.

By the definition, A + B ⊂ A +̂ B = B +̂ A hold, and (x0; ξ0) ∈ A +̂ B if and only if there

exist sequences {(xn; ξn)}n∈N
⊂ A and {(yn; ηn)}n∈N

⊂ B such that

(1.8) xn, yn −→
n

x0, ξn + ηn −→
n

ξ0, |xn − yn| |ξn| −→
n

0.
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Microsupport. For any object F of Db(X), we denote by SS(F ) the microsupport of F

which is a closed conic subset of T ∗X and described as follows:

Let (x) be local coordinates of X and (x0; ξ0) a point of T ∗X. Then (x0; ξ0) /∈ SS(F )

if and only if the following condition holds: There exist an open neighborhood U of x0

in X and a proper convex (subanalytic) closed cone γ ⊂ X satisfying ξ0 ∈ Int γ◦ a ∪ {0}
such that

(1.9) RΓ (H ∩ (x + γ); F ) ∼→ RΓ (L ∩ (x + γ); F )

holds for any x ∈ U and any sufficiently small ε > 0. Here

L := {y ∈ X; Re 〈y − x0, ξ0〉 = −ε} ⊂ H := {y ∈ X; Re 〈y − x0, ξ0〉 � −ε}.

Note that SS(F ) ∩ T ∗
XX = supp F . Since H ∩ (x + γ) and L ∩ (x + γ) are compact, if we

set

(1.10) Z(x, ε) := (H \ L) ∩ (x + γ) = {y ∈ X; Re 〈y − x0, ξ0〉 > −ε} ∩ (x + γ),

then (1.9) is equivalent to

(1.11) RΓc(Z(x, ε); F ) = 0.

2. Systems with Regular Singularities.

From now on, M denotes an n-dimensional real analytic manifold, X a complexification

of M , and i : M ↪→ X the natural embedding. We denote by OX the sheaf of holomorphic

functions, and by DX the Ring of holomorphic linear differential operators on X respec-

tively. Let EX be the Ring of microdifferential operators on T ∗X and {E (m)
X }m∈Z

the usual

order filtration on EX (see [S-K-K] or [Sc]). Let V be a C
×-conic involutory closed subset

of Ṫ ∗X. Then we set

IV := {P ∈ E (1)
X ; σ1(P )

∣∣
V ≡ 0}, EV :=

⋃
m∈N0

I m
V .

Here σm(P ) denotes the principal symbol of P ∈ E (m)
X . Namely, EV ⊂ EX is a sheaf

of subring generated by IV . By the definition, E (0)
X ⊂ EV holds. Further Kashiwara-

Oshima [K-O] proved that EV is a Noetherian Ring, and that every coherent EX-Module

is pseudocoherent as an EV -Module.

2.1. Definition ([K-O]). Let V be a C
×-conic involutory closed subset of Ṫ ∗X and M

a coherent EX-Module defined in an open set of Ṫ ∗X. Then we say that M has regular

singularities along V if there exists locally a sheaf of EV -submodule L ⊂ M such that L

is E (0)
X coherent and that EXL = M.

If M has regular singularities along V , then supp M ⊂ V ([K-K, Lemma 1.13]).
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2.2. Definition. Let V be a C
×-conic involutory closed subset of T ∗X and M a coherent

DX-Module. Then we say that M has regular singularities along V if a coherent EX-

Module EX ⊗
π−1DX

π−1M has regular singularities along V ∩ Ṫ ∗X and the characteristic

variety char(M ) := supp(EX ⊗
π−1DX

π−1M ) is contained in V .

The notion of regular singularities is closely related to the Levi condition (see [D’A-T]).

If V ⊂ T ∗X is a regular involutory complex vector subbundle, then there exists locally

a smooth morphism f : X → Z of complex manifolds such that

(2.1) V = X ×
Z

T ∗Z.

2.3. Proposition ([MF-K-S], see also [H]). Let M be a coherent DX-Module which has

regular singularities along X ×
Z

T ∗Z. Then there exists locally on X a finite free resolution

of M :

0 → DX→Z
⊕Nr → DX→Z

⊕Nr−1 → · · · → DX→Z
⊕N1 → DX→Z

⊕N0 → M → 0.

3. The Functor of Formal Cohomology.

Let us briefly recall the functor of formal cohomology due to Kashiwara-Schapira [K-S 3].

We inherit the notation form the preceding section. Since the base ring is fixed to C, we

simply write H om(∗, ∗) = H om
CX

(∗, ∗), ∗⊗∗ = ∗ ⊗
CX

∗ and so on. We set DA
M := i−1DX

to avoid the confusion. Let BM and C∞
M be the sheaves on M of Sato hyperfunctions and

of complex valued C∞ functions respectively. We denote by R-Cons(M) and Mod(DA
M)

the Abelian categories of R-constructible sheaves on M and of (left) DA
M -Modules re-

spectively. Let Db
R–c(M) and Db(DA

M) be the bounded derived categories of R-Cons(M)

and Mod(DA
M) respectively. We denote by

(3.1) ∗
w
⊗C∞

M : Db
R–c(M) → Db(DA

M)

the Whitney functor due to Kashiwara-Schapira [K-S 3]. We recall:

3.1. Theorem ([K-S 3]). (1) ∗
w
⊗C∞

M : R-Cons(M) → Mod(DA
M) is an exact functor.

(2) If U ⊂ M is a subanalytic open subset, then CU

w
⊗C∞

M = I ∞
M,M\U ⊂ C∞

M is the

subsheaf consisting of sections vanishing at infinite order on M \ U .

(3) If Z ⊂ M is a subanalytic closed subset, then CZ

w
⊗C∞

M = W ∞
M,Z := C∞

M

/
I ∞

M,Z is

the sheaf of Whitney functions on Z.

Let XR be the real underlying manifold of X, and X the complex conjugate manifold

of X. The functor of formal cohomology is defined by

∗
w
⊗OX := RH omDX

(OX , ∗
w
⊗C∞

XR) : Db
R–c(X) → Db(DX).
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3.2. Theorem ([K-S 3]). (1) For any F ∈ ObDb
R–c(M), it follows that

Ri∗F
w
⊗OX = Ri∗(F

w
⊗C∞

M ).

In particular, CM

w
⊗OX = C∞

M holds.

(2) If Z ⊂ X is a closed analytic subset, then CZ

w
⊗OX is the formal completion of OX

along Z.

(3) There exists the following chain of morphisms :

F
w
⊗OX → TH om(D′

XF, OX) → RH om(D′
XF,OX).

Here TH om(∗, OX) denotes the functor of moderate cohomology due to Kashiwara [K],

and D′
XF := RH om(F, CX).

Let N be a real analytic closed submanifold of M . Let Y be a complexification of N

in X, and fN : N ↪→ M the canonical embedding with a complexification f : Y ↪→ X:

(3.2)

N ⊂
fN → M

Y
↓
∩

⊂ f → X.

i↓
∩

Let τN : TNM → N and πN : T ∗
NM → N be the normal and the conormal bundles to N in

M respectively. We denote by νN(∗) : Db(M) → Db
R>0

(TNM) the specialization functor,

and by

W-νN(∗⊗C∞
M ) = wνN(∗, C∞

M ) : Db
R–c(M) → Db

R>0
(TNM),

W-µN(∗⊗C∞
M ) := W-νN(∗⊗C∞

M )∧ : Db
R–c(M) → Db

R>0
(T ∗

NM),

the Whitney specialization functor and its Fourier-Sato transform due to Colin [C 1], [C 3].

In particular, we set:

W-νN(C∞
M ) := W-νN(CM ⊗C∞

M ), W-µN(C∞
M ) := W-µN(CM ⊗C∞

M ).

Then we recall:

3.3. Theorem ([C 1]). (1) W-νN(C∞
M ) and W-µN(C∞

M ) are concentrated in degree zero,

and there exist the following natural monomorphisms of sheaves:

W-νN(C∞
M ) � νN(BM), W-µN(C∞

M ) � µN(BM).

(2) RτN !W-νN(C∞
M ) = (CN

w
⊗C∞

M )⊗ωN/M = W ∞
M,N ⊗ωN/M and RτN∗W-νN(C∞

M ) =

f −1
N C∞

M hold. Here ωN/M is the relative dualizing complex.

Taking F = W-νN(C∞
M ), νN(C∞

M ) or νN(BM) in Proposition 1.1, we obtain:

6



3.4. Proposition. There exists the following morphism of distinguished triangles:

W-νN(C∞
M ) → τ −1

N W ∞
M,N → Rp+

1∗ p+−1
2 W-µN(C∞

M )⊗ω⊗−1
N/M

+1−→
↓ ↓ ↓

νN(C∞
M ) → τ −1

N RΓN(C∞
M )⊗ω⊗−1

N/M → Rp+
1∗ p+−1

2 µN(C∞
M )⊗ω⊗−1

N/M

+1−→
↓ ↓ ↓

νN(BM) → τ −1
N ΓN(BM)⊗ω⊗−1

N/M → Rp+
1∗ p+−1

2 µN(BM)⊗ω⊗−1
N/M

+1−→ .

Note that applying the functor RπN∗ to the distinguished triangles in Proposition 3.4

(or using Sato’s fundamental distinguished triangle), we obtain the following morphisms

of distinguished triangles:

(3.3)

f −1
N C∞

M → W ∞
M,N → Rπ̇N∗W-µN(C∞

M )⊗ω⊗−1
N/M

+1−→
‖ ↓ ↓

f −1
N C∞

M → RΓN(C∞
M )⊗ω⊗−1

N/M → Rπ̇N∗ µN(C∞
M )⊗ω⊗−1

N/M

+1−→
↓ ↓ ↓

f −1
N BM → ΓN(BM)⊗ω⊗−1

N/M → Rπ̇N∗ µN(BM)⊗ω⊗−1
N/M

+1−→ .

For any coherent DX-Module M , we denote by Df ∗M := OY

L
⊗

f−1OX

f −1M the induced

system of M . Assume that Y is non-characteristic for M ; that is, char(M ) ∩ Ṫ ∗
Y X = ∅.

Then, it is known that Df ∗M is identified with MY := H0Df ∗M which is a coherent

DY -Module. By [K-S 2, Exercise XI.11] and [K-S 3, Theorem 7.2], we have

(3.4)

RH omDX
(M , W ∞

M,N) → RH omDX
(M , ΓN(BM))⊗ω⊗−1

N/M

RH omDY
(MY , C∞

N )

�↓
→ RH omDY

(MY , BN).

�↓

In particular, by Proposition 3.4 and (3.4), we have a morphism H omDX
(M , νN(BM)) →

τ −1
N H omDY

(MY , BN) which is nothing but the non-characteristic boundary value mor-

phism (hence a monomorphism) (see for example [O-Y, Theorem 5.3]). Therefore, by

Proposition 3.4 and (3.4), we obtain the following:

3.5. Proposition. Let M be a coherent DX-Module for which Y is non-characteristic.

Then the diagram below is commutative:

RH omDX
(M , W-νN(C∞

M ))
W-γ → τ −1

N RH omDY
(MY , C∞

N )

↓ ↓
RH omDX

(M , νN(C∞
M )) → τ −1

N RΓNRH omDX
(M , C∞

M )⊗ω⊗−1
N/M

↓ ↓
RH omDX

(M , νN(BM))
γ → τ −1

N RH omDY
(MY , BN).
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Further following all the morphisms are monomorphisms:

H omDX
(M , W-νN(C∞

M )) >→ H omDX
(M , νN(C∞

M )) >→ H omDX
(M , νN(BM))

τ −1
N H omDY

(MY , C∞
N )

W-γ0↓
∨

> → τ −1
N H omDY

(MY , BN).

γ0↓
∨

Let Z be a closed real analytic submanifold of X. We denote by

W-νZ(∗⊗OX) := RH omDX
(OX , W-νZ(∗⊗C∞

XR)) : Db
R–c(X) → Db

R>0
(TZX),

W-µZ(∗⊗OX) := W-νZ(∗⊗OX)∧ : Db
R–c(X) → Db

R>0
(T ∗

ZX),

the formal specialization functor along Z and its Fourier-Sato transform due to Colin

[C 1], [C 3]. Note that as in Proposition 3.4, there exists the distinguished triangle below:

(3.5) W-νZ(F ⊗OX) → τ −1
Z (FZ

w
⊗OX) → Rp+

1∗ p+−1
2 W-µZ(F ⊗OX)⊗ω⊗−1

Z/X

+1−→ .

4. Formal Microlocalization and Estimate of Microsupports.

We inherit the notation from the preceding sections. First, we impose the following:

4.1. Condition. V is a regular involutory complex subbundle of T ∗X, and M is a

coherent DX-Module and has regular singularities along V .

The following theorem is the first main result in this paper:

4.2. Theorem (cf. [MF-K-S, Theorem 2.1]). Let V and M satisfy Condition 4.1. Then

for any F ∈ ObDb
R–c(X), it follows that

SS
(
RH omDX

(M , F
w
⊗OX)

)
⊂ V +̂ SS(F ).

Proof. Since

SS
(
RH omDX

(M , F
w
⊗OX)

)
∩ T ∗

XX = supp
(
RH omDX

(M , F
w
⊗OX)

)
⊂ supp M ∩ supp F ⊂

(
V +̂ SS(F )

)
∩ T ∗

XX,

we shall consider on Ṫ ∗X. The method of proof is same as in [MF-K-S]. Since the problem

is local, we may assume that X = Y × Z, f : Y × Z → Z is a canonical projection, and

V = X ×
Z

T ∗Z = Y × T ∗Z. Hence by Proposition 2.3 and a standard argument, we may

assume that M = DX→Z .

Let (x0; ξ0) be a point of Ṫ ∗X. Assume that (x0; ξ0) /∈ V +̂ SS(F ). We take a neighbor-

hood U of x0 and a proper convex subanalytic closed cone γ ⊂ X such that ξ0 ∈ Int γ◦ a

and (U × γ◦ a) ∩
(
V +̂ SS(F )

)
⊂ T ∗

XX. Set for short:

H(F ) := RH omDX
(DX→Z , F

w
⊗OX).

Let Z(x, ε) be as (1.10). By (1.11), we may show:

(4.1) RΓc(Z(x, ε); H(F )) = 0,
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Take v ∈ Int γ and set Zδ := Z(x − δv, ε − δ) for 0 < δ � ε. We may assume that

x − δv ∈ U . Then, for any j ∈ Z we have

Hj
c (Z(x, ε); H(F )) = lim−→

δ>0

Hj
c (X; CZδ

L
⊗H(F )).

By [K-S 3, Proposition 2.8], we have a natural morphism:

(4.2) CZδ

L
⊗(F

w
⊗OX) → (CZδ

L
⊗F )

w
⊗OX .

Next we set

Z ′
δ := (x − δv + Int γ) ∩ {y ∈ X; Re 〈y − x0, ξ〉 � δ − ε}.

Note that Zδ ∩ Z ′
δ = Int Zδ . Since

RH om(CZδ
, D′

XCZ′
δ
) = RH om(CZδ

, RH om(CZ′
δ
, CX))

= RH om(CZδ

L
⊗CZ′

δ
, CX) = RH om(CInt Zδ

, CX),

a natural morphism CInt Zδ
→ CX induces a morphism

(4.3) CZδ
→ D′

XCZ′
δ
.

Since D′
XD′

XF = F , we have

D′
XCZ′

δ

L
⊗F = RH om(CZ′

δ
, CX)

L
⊗F → RH om(CZ′

δ
, F )

= RH om(CZ′
δ
, RH om(D′

XF, CX))

� RH om(CZ′
δ

L
⊗D′

XF, CX) = D′
X(CZ′

δ

L
⊗D′

XF ).

(4.4)

For 0 < δ′ < δ, we set

W := (x − δv + Int γ) ∩ {y ∈ X; Re 〈y − x0, ξ〉 > δ′ − ε}.

Then W is an open subset of X and both Z ′
δ and Zδ′ are closed subsets of W . Hence,

there exists the following chain of morphisms:

(4.5) RΓZ′
δ
(F

w
⊗OX) → RΓW (F

w
⊗OX) → RΓW

(
(F

w
⊗OX)Z

δ′

)
= (F

w
⊗OX)Z

δ′
.

Therefore by (4.3), (4.4), [K-S 3, Proposiotion 2.8] and (4.5), we have the following chain

of natural morphisms:

(CZδ

L
⊗F )

w
⊗OX → (D′

XCZ′
δ

L
⊗F )

w
⊗OX →

(
D′

X(CZ′
δ

L
⊗D′

XF )
) w
⊗OX

→ RH om(CZ′
δ
, D′

XD′
XF

w
⊗OX) � RΓZ′

δ
(F

w
⊗OX)

→ (F
w
⊗OX)Z

δ′
= CZ

δ′

L
⊗(F

w
⊗OX).

(4.6)

Thus by (4.2) and (4.6), we have a chain of natural morphisms:

CZδ

L
⊗(F

w
⊗OX) → (CZδ

L
⊗F )

w
⊗OX → CZ

δ′

L
⊗(F

w
⊗OX) → (CZ

δ′

L
⊗F )

w
⊗OX .

9



Hence taking inductive limits, we have

Hj
c (Z(x, ε); H(F )) = lim−→

δ>0

Hj
c (X; CZδ

L
⊗H(F )) = lim−→

δ>0

Hj
c (X; H(CZδ

L
⊗F )).

Since f is proper over supp CZδ
, we have by [K-S 3, Theorem 7.2]:

(4.7) Rf!RH omDX
(DX→Z , (CZδ

L
⊗F )

w
⊗OX) � Rf!(CZδ

L
⊗F )

w
⊗OZ .

Hence applying the functor RΓc(Y ; ∗) to (4.7), we have

lim−→
δ>0

Hj
c (X; H(CZδ

L
⊗F )) � lim−→

δ>0

Hj
c (Y ; Rf!(CZδ

L
⊗F )

w
⊗OZ).

Hence the proof of (4.1) is reduced to show

(4.8) Rf!(CZδ

L
⊗F ) = 0.

Set ϕ(y) := Re 〈x0 − y, ξ0〉 and Xt := {y ∈ X; ϕ(y) < t}. Then Zδ = (x− δv + γ)∩Xδ−ε .

If we prove that for any y ∈ U

(4.9) −dϕ(y) = (y; ξ0) /∈
(
SS(C(x−δv+γ)

L
⊗F ) + V

)
holds, then we have by [K-S 2, Proposition 5.4.17 (c)], for any t with Xt ∩ U �= ∅,

Rf!(CZδ

L
⊗F ) = Rf!(C(x−δv+γ)∩Xt

L
⊗F )

holds. Hence choosing t < 0 as (x − δv + γ) ∩ Xt = ∅, we can obtain (4.8).

Now we prove (4.9). Since

(U × γ◦ a) ∩ SS(F ) ⊂ (U × γ◦ a) ∩
(
V +̂ SS(F )

)
⊂ T ∗

XX,

we have

SS(C(x−δv+γ) ⊗F ) ⊂ (U × γ) +̂ SS(F ) = (U × γ) + SS(F ).

On the other hand, since

(U × γ◦ a) ∩
(
V + SS(F )

)
⊂ (U × γ◦ a) ∩

(
V +̂ SS(F )

)
⊂ T ∗

XX,

we have:

(U × γ◦ a) ∩
(
SS(C(x−δv+γ) ⊗F ) + V

)
⊂ (U × γ◦ a) ∩

(
V + (U × γ) + SS(F )

)
⊂ T ∗

XX.

Thus we obtain

(U × Int γ◦ a) ∩
(
SS(C(x−δv+γ)

L
⊗F ) + V

)
= ∅.

This proves (4.9) since ξ0 ∈ Int γ◦ a. �

10



We denote by pj : X × X → X the j-th projection, and by ∆ � X the diagonal set of

X × X. Then the formal specialization of F ∈ ObDb
R–c(X) is defined by

F
w
⊗
ν

OX := RH omDX×X
(DX×X−→

p1

X , W-ν∆(p−1
2 F ⊗OX×X))⊗ωTX/X .

We give another expression of F
w
⊗
ν

OX : Let X̃C be the complex normal deformation of ∆

in X ×X and t : X̃C → C the canonical mapping. Set Ω := t−1(R>0) ⊂ X̃C and consider

the commutative diagram below:

TX ⊂ σ → X̃C ← j ⊃ Ω

������

p̃

X

↓↓
⊂ → X × X.

p
↓

Set ρj := pj ◦ p : X̃C → X. Then we have

F
w
⊗
ν

OX = σ−1RH omD
X̃C

(DX̃C−→
ρ1

X , (ρ−1
2 F

L
⊗CCl Ω)

w
⊗OX̃C)⊗ωTX/X .

The formal microlocalization is the Fourier-Sato transform of F
w
⊗
ν

OX :

F
w
⊗
µ

OX := (F
w
⊗
ν

OX)∧ .

Note that the original definition in [C 2] is F
w
⊗
µ

OX = (F
w
⊗
ν

OX)∧ a . However, in view of

Theorem 4.3 (3) below, we slightly changed the definition.

We recall the fundamental properties of the formal microlocalization functor

∗
w
⊗
µ

OX : Db
R–c(X) → Db

R>0
(T ∗X).

4.3. Theorem ([C 1], [C 2]). (1) F
w
⊗
µ

OX

∣∣
X = F

w
⊗OX and there exists the following

distinguished triangle:

F
L
⊗OX → F

w
⊗OX → Rπ̇∗(F

w
⊗
µ

OX)
+1−→ .

(2) Each cohomology Hj(F
w
⊗
µ

OX) is an EX-Module for any j ∈ Z.

(2) supp(F
w
⊗
µ

OX) ⊂ SS(F )a and there exists the following chain of morphisms :

F
w
⊗
µ

OX → T-µ hom(D′
XF, OX) → µ hom(D′

XF,OX),

where T-µ hom(∗, OX) is the temperate µ hom functor due to Andronikof [A].

11



Note that both supp
(
T-µ hom(D′

XF, OX)
)

and supp
(
µ hom(D′

XF,OX)
)

are contained in

SS(D′
XF ) = SS(F )a.

Further we can show that every quantized contact transformation acts on F
w
⊗
µ

OX as

an isomorphism. Precisely, let X and Y be complex manifolds with same dimension

n and (pX , pY ) ∈ Ṫ ∗X × Ṫ ∗Y . Let χ : (T ∗Y )pY
→ (T ∗X)pX

be a germ of complex

canonical transformation and Λ ⊂ T ∗(X × Y ) the Lagrangian submanifold associated

with χ. Let K be an object of Db
C–c(X × Y ; pX , pa

Y ) such that SS(K) = Λ and K is

simple with shift zero along Λ (for the notation and terminology, see [A] and [K-S 2]).

We denote by qj the j-th projection on X × Y . For every G ∈ ObDb
R–c(Y ; pa

Y ), we set

ΦK[n](G) := Rq1 !(K[n]
L
⊗ q−1

2 G) ∈ ObDb
R–c(X; pX).

4.4. Theorem. Under the notation above, the quantized contact transformation induces

the following isomorphisms at pX :

χ∗(D
′
Y G

w
⊗
µ

OY ) → χ∗T-µ hom(G, OY ) → χ∗µ hom(G, OY )

D′
XΦK[n](G)

w
⊗
µ

OX

�↓
→ T-µ hom(ΦK[n](G), OX)

�
↓

→ µ hom(ΦK[n](G), OX).

�
↓

Let N be a closed real analytic submanifold of M , and πN : T ∗
NX → N the canonical

projection. We see that supp(CN

w
⊗
µ

OX) ⊂ T ∗
NX, and by [C 1], for any p ∈ Ṫ ∗

NX we have

(4.10) Hk(CN

w
⊗
µ

OX)p � lim−→
U,V

HcodimXN+k(X; CV ∩Cl U

w
⊗OX).

Here U ranges through the family of subanalytic open neighborhoods of πN(p) in X, and V

ranges through the family of subanalytic open sets of X such that CN(V )πN (p) ⊂ Int{p}◦.
Since the problem is local, we may assume that X = C

n and both U and V can be

chosen as bounded convex sets. On the other hand, by the proof of [Be, Theorem 4.4],

for any relatively compact Stein open subset V � X, it follows that RΓ (X; CV

w
⊗OX) is

concentrated in degree dim
C
X = dim M . Hence choosing V � U in (4.10), we obtain the

following:

4.5. Proposition. Let M be a real analytic manifold, N a closed real analytic submanifold

of M . Then CN

w
⊗
µ

OX

∣∣
Ṫ ∗

NX is concentrated in degree −codimMN .

4.6. Remark. Under the same notation in Proposition 4.5, CN

w
⊗
µ

OX

∣∣
N = CN

w
⊗C∞

M =

W ∞
M,N is concentrated in degree zero. Hence in general, the complex CN

w
⊗
µ

OX is not

concentrated in a single degree in T ∗X.

12



Let f : Y → X be a morphism of manifolds. We set natural mappings associated with

f as follows:

T ∗Y
fd←− Y ×

X
T ∗X

fπ−→ T ∗X.

We extend Theorem 4.2 to the formal microlocalization functor:

4.7. Theorem (cf. [MF-K-S, Theorem 2.3]). Let V be a closed C
×-conic regular invo-

lutory submanifold of T ∗X and F an object of Db
R–c(X). Suppose one of the following

conditions :

(1) M is a coherent DX-Module such that V and M satisfy Condition 4.1.

(2) M is a coherent EX-Module defined on an open subset of Ṫ ∗X and has regular

singularities along V , and F
w
⊗
µ

OX

∣∣
U is concentrated in a single degree.

Then it follows that

SS
(
RH omEX

(M , F
w
⊗
µ

OX)
)
⊂ C(V, SS(F )a).

Proof. Since the problem is local, in Case (1) we may assume that X = Y × Z, V =

X ×
Z

T ∗Z = Y × T ∗Z and M = DX→Z by Proposition 2.3. In Case (2), we may assume

that X = Y ×Z and V = X ×
Z

T ∗Z = Y × T ∗Z by a suitable contact transformation. By

[K-O, Theorem 1.9], we can find an exact sequence

0 → N → EX→Z
⊕N0 → M → 0,

and N has also regular singularities along V . Hence by a standard argument, the proof

can be reduced to the case where M = EX→Z = EX ⊗
π−1DX

π−1DX→Z . Therefore in both

cases, the proof is reduced to the estimation of

SS
(
RH omDX

(DX→Z , F
w
⊗
µ

OX)
)
.

Let f : X = Y ×Z → Z be the canonical projection. We work on the space T ∗TX under

the identifications of (1.6), and by [K-S 2, Theorem 5.5.5] we see

SS
(
RH omDX

(DX→Z , F
w
⊗
µ

OX)
)

= SS
(
RH omDX

(DX→Z , F
w
⊗
ν

OX)
)
.

Then setting h := f ◦ ρ1 : X̃C → Z, we have

RH omDX
(DX→Z , F

w
⊗
ν

OX) = σ−1RH omD
X̃C

(D
X̃C→Z

, (ρ−1
2 F ⊗CCl Ω)

w
⊗O

X̃C
).

Let X = {(x, y); y = 0} ⊂ X × X = {(x, y)} be local coordinates of (1.5). Then the

coordinates of X̃C are {(x, y, t); t ∈ C, (x, x − ty) ∈ X × X} and

p(x, y, t) = (x, x − ty), ρ1(x, y, t) = x, ρ2(x, y, t) = x − ty.
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Let (x, y, t; ξ, η, τ) be the coordinates of T ∗X̃C associated with (x, y, t). Since h : X̃C → Z

is smooth, we see

char(D
X̃C→Z

) = Ṽ := ρd(X̃
C ×

Z
T ∗Z) = {(x, y, t; ξ, 0, 0) ∈ T ∗X̃C; (x; ξ) ∈ Y × T ∗Z}.

By [K-S 2, Corolllary 6.4.4], we have

SS
(
RH omDX

(DX→Z , F
w
⊗
ν

OX)
)

= SS
(
σ−1RH omD

X̃C
(D

X̃C→Z
, (ρ−1

2 F ⊗CCl Ω)
w
⊗O

X̃C
)
)

⊂ σ�
(
SS

(
RH omD

X̃C
(DX̃C→Z , (ρ−1

2 F ⊗CCl Ω)
w
⊗O

X̃C
)
))

⊂ σ�
(
Ṽ +̂ SS(ρ−1

2 F ⊗CCl Ω)
)
⊂ σ�

(
Ṽ +̂

(
SS(ρ−1

2 F ) +̂ SS(CCl Ω)
))

.

Hence we may show

σ�
(
Ṽ +̂

(
SS(ρ−1

2 F ) +̂ SS(CCl Ω)
))

⊂ C(Ṽ , SS(F )a).

Since ρ2 is smooth, by [K-S 2, Proposition 5.4.5], we have

SS(ρ−1
2 F ) = ρ2 d ρ −1

2 π SS(F ) = {(x, y, t; ξ,−tξ,−〈y, ξ〉) ∈ T ∗X̃C; (x − ty; ξ) ∈ SS(F )}.

Hence it follows that SS(ρ−1
2 F ) ∩ SS(CCl Ω)a ⊂ T ∗

X̃C
X̃C since

SS(CCl Ω) = {(x, y, t; 0, 0, τ) ∈ T ∗X̃C; Im t = Re t Re τ = 0, Re t � 0, Re τ � 0}.

Thus we have (see [K-S 2, Remark 6.2.6])

SS(ρ−1
2 F ) +̂ SS(CCl Ω) = SS(ρ−1

2 F ) + SS(CCl Ω).

Let (x0, y0; ξ0, η0) be a point of T ∗TX. Assume that

(x0, y0; ξ0, η0) ∈ σ�
(
Ṽ +̂

(
SS(ρ−1

2 F ) + SS(CCl Ω)
))

.

Then by (1.4) there exists a sequence

{(xn, yn, tn; ξn, ηn, τn)}n∈N
⊂ Ṽ +̂

(
SS(ρ−1

2 F ) + SS(CCl Ω)
)

such that (xn, yn, tn; ξn, ηn) −→
n

(x0, y0, 0; ξ0, η0) and |tn| |τn| −→
n

0. Thus by (1.8) there exist

sequences 
{(xn,j, yn,j, tn,j; ξn,j, 0, 0)}j,n∈N

⊂ Ṽ ,

{(x′
n,j, y

′
n,j, t

′
n,j; ξ

′
n,j,−t′n,jξ

′
n,j,−〈y′

n,j, ξ
′
n,j〉)}j,n∈N

⊂ SS(ρ−1
2 F ),

{(x′
n,j, y

′
n,j, t

′
n,j; 0, 0, τ

′′
n,j)}j,n∈N

⊂ SS(CCl Ω),

such that 
(xn,j, yn,j, tn,j), (x′

n,j, y
′
n,j, t

′
n,j) −→

j
(xn, yn, tn),

(ξn,j + ξ′n,j,−t′n,jξ
′
n,j, τ

′′
n,j − 〈y′

n,j, ξ
′
n,j〉) −→

j
(ξn, ηn, τn),

|(xn,j − x′
n,j, yn,j − y′

n,j, tn,j − t′n,j)| |ξn,j| −→
j

0,
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hold. Hence by extracting subsequences, we may assume that there exist sequences
{(xn, yn, tn; ξn, 0, 0)}n∈N

⊂ Ṽ ,

{(x′
n, y

′
n, t

′
n; ξ′n,−t′nξ

′
n,−〈y′

n, ξ
′
n〉)}n∈N

⊂ SS(ρ−1
2 F ),

{(x′
n, y

′
n, t

′
n; 0, 0, τ ′′

n)}n∈N
⊂ SS(CCl Ω),

such that  (xn, yn, tn), (x′
n, y

′
n, t

′
n) −→

n
(x0, y0, 0),

(ξn + ξ′n,−t′nξ
′
n) −→

n
(ξ0, η0),

hold. In particular, we have Re t′n � 0 and Im t′n = 0. Since t′n −→
n

0, we see t′nξn+t′nξ
′
n

→−→
n

0,

and we have t′nξn −→
n

η0 since −t′nξ
′
n −→

n
η0. Thus we can find {cn}n∈N

⊂ R>0 such that

cn −→
n

0 and cnξn, −cnξ
′
n −→

n
η0. Consider sequences{

{(x′
n + (cn − t′n)y′

n; cnξn)}n∈N
⊂ V,

{(x′
n − t′ny

′
n;−cnξ

′
n)}n∈N

⊂ SS(F )a.

Then (x′
n + (cn − t′n)y′

n; cnξn), (x′
n − t′ny

′
n;−cnξ

′
n) −→

n
(x0; η0) and

1

cn

(
(x′

n + (cn − t′n)y′
n; cnξn) − (x′

n − t′ny
′
n;−cnξ

′
n)

)
= (y′

n; ξn + ξ′n) −→
n

(y0, ξ0).

Therefore by (1.3) we have

(x0, η0; y0, ξ0) ∈ C(V, SS(F )a).

The proof is complete. �

Next we introduce the following condition:

4.8. Condition. V ⊂ T ∗X is a closed C
×-conic regular involutory submanifold, and M

is a coherent DX-Module and has regular singularities along V .

4.9. Theorem. Let V be a closed C
×-conic regular involutory submanifold of T ∗X, M

a coherent DX-Module, and F an object of Db
R–c(X). Suppose one of the following con-

ditions :

(1) V and M satisfy Condition 4.1.

(2) V and M satisfy Condition 4.8, and F
w
⊗
µ

OX

∣∣
Ṫ ∗X is concentrated in a single degree.

Then it follows that

SS
(
RH omDX

(M , F
w
⊗OX)

)
⊂ V +̂ SS(F ).

Proof. Consider the distinguished triangle below:

RH omDX
(M , F

L
⊗OX) → RH omDX

(M , F
w
⊗OX) → Rπ̇∗RH omDX

(M , F
w
⊗
µ

OX)
+1−→ .
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Since M is coherent, we have

RH omDX
(M , F

L
⊗OX) = RH omDX

(M , OX)
L
⊗F.

By [K-S 2, Theorem 11.3.3], we see

SS
(
RH omDX

(M , OX)
)

= char(M ) ⊂ V.

Thus by virtue of [K-S 2, Corollary 6.4.5], we have

SS
(
RH omDX

(M , F
L
⊗OX)

)
⊂ V +̂ SS(F ).

On the other hand, by [K-S 2, Propositions 5.5.4, 6.2.4] and Theorem 4.7, we have

SS
(
Rπ̇∗RH omDX

(M , F
w
⊗
µ

OX)
)
⊂ V +̂

∞
SS(F ) ⊂ V +̂ SS(F ).

Therefore by [K-S 2, Proposition 5.1.3], we obtain the desired result. �

4.10. Example (cf. [Bo]). Let πM : T ∗
MX → M be the natural projection and k : T ∗

MX ↪→
T ∗X the canonical embedding. We set

C d
M := k−1(CM

w
⊗
µ

OX).

Note that supp(CM

w
⊗
µ

OX) ⊂ T ∗
MX. Let us set AM := OX

∣∣
M . Then we have

0 → AM → C∞
M → π̇M ∗ C d

M → 0, Rjπ̇M ∗ C d
M = 0 (j �= 0),

and there exist natural monomorphisms

C d
M � C f

M := T-µ hom(D′
XCM , OX) � CM = µ hom(D′

XCM , OX).

C d
M

∣∣
Ṫ ∗

MX is concentrated in degree zero by Proposition 4.5, and

RπM ∗C
d
M = C d

M

∣∣
M = CM

w
⊗OX

∣∣
M = C∞

M

is also concentrated in degree zero. Therefore C d
M is a conic sheaf of T ∗

MX, and in par-

ticular defined as an object of Db(EX). Let p : TT ∗X = T ∗T ∗X → T ∗X be the canonical

projection. By (1.1), (1.2) and (1.7), we have:

T ∗X ← iπ < M ×
X

T ∗X
id � T ∗M

TT ∗X
↓
∨

← < T ∗
MX ×

T ∗X
TT ∗X

↓
∨

� TT ∗
MXT ∗X
↓
∨

T ∗T ∗X

�����
←kπ< T ∗

MX ×
T ∗X

T ∗T ∗X

���
kd� T ∗T ∗

MX.

����
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Let V and M satisfy Condition 4.8. Then, we see C(V, T ∗
MX) = k−1

d CT ∗
MX(V ) (cf. [K-S 2,

Proposition 4.4.2]). Hence, we have by [K-S 2, Proposition 5.4.4]

k−1
d SS

(
RH omDX

(M , C d
M)

)
∩ p−1(Ṫ ∗X) = kπk−1

d SS
(
RH omDX

(M , C d
M)

)
∩ p−1(Ṫ ∗X)

= SS
(
RH omDX

(M , Rk∗C
d
M)

)
∩ p−1(Ṫ ∗X)

= SS
(
RH omDX

(M , CM

w
⊗
µ

OX)
)
∩ p−1(Ṫ ∗X)

⊂ C(V, SS(CM)a) = C(V, T ∗
MX) = k−1

d CT ∗
MX(V ).

Therefore we have:

SS
(
RH omDX

(M , C d
M)

)
∩ p−1(Ṫ ∗

MX) ⊂ CT ∗
MX(V ).

For the same reason, we obtain by Theorem 4.9:

i−1
d SS

(
RH omDX

(M , C∞
M )

)
= iπi−1

d SS
(
RH omDX

(M , C∞
M )

)
= SS

(
RH omDX

(M , Ri∗C
∞
M )

)
= SS

(
RH omDX

(M , CM

w
⊗OX)

)
⊂ V +̂ SS(CM) = V +̂ T ∗

MX = (M ×
X

T ∗X) ∩ k−1
d CT ∗

MX(V ).

Thus we have

(4.11) SS(RH omDX
(M , C∞

M )) ⊂ id
(
(M ×

X
T ∗X) ∩ k−1

d CT ∗
MX(V )

)
= i�(V ).

5. Hyperbolic Boundary Value Problem for Whitney Functions.

In this section, we consider a hyperbolic boundary value problem for Whitney functions.

First we shall prove the following:

5.1. Proposition (cf. [MF-K-S, Theorem 2.2]). Let V and M satisfy Condition 4.1, F

an object of Db
R–c(X). Let Y be a real analytic closed submanifold of X and f : Y ↪→ X

the embedding. Assume:

(5.1) T ∗
Y X ∩

(
V +̂ SS(F )

)
⊂ T ∗

XX.

Then, the distinguished triangle (3.5) induces the following isomorphism:

RH omDX
(M , W-νY (F ⊗OX)) ∼→ τ −1

Y RH omDY
(MY , FY

w
⊗OY ).

Proof. By [K-S 3, Theorem 7.2], we have

RH omDX
(M , FY

w
⊗OX) ∼→ RH omDY

(MY , FY

w
⊗OY ).

Hence by (3.5), we may prove

(5.2) RH omDX
(M , W-µY (F ⊗OX))

∣∣
Ṫ ∗

Y X = 0.
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Let d be the codimension of Y . Since the problem is local, we may assume that X =

C
n = Y × Z, f : Y 
 y �→ (y, 0) ∈ X, and that V is of the form (2.1). By the stalk

formula ([C 1]), for any x∗ ∈ Ṫ ∗
Y X and j ∈ Z we have

HjRH omDX
(M , W-µZ(F ⊗OX))x∗ = lim−→

U

HjRH omDX
(M , FU

w
⊗OX)π(x∗) .

Here U ranges through the family of subanalytic open sets of X such that CY (Cl U)π(x∗) ⊂
Int{x∗}◦. We may assume that π(x∗) = 0 and that U has a form Y × Γ. Here Γ is a

proper convex subanalytic open cone of Z. By Theorem 4.2, we have

SS
(
RH omDX

(M , FU

w
⊗OX)

)
⊂ V +̂ SS(FU).

Set W := {(y, z) ∈ Y × Z; z ∈ Cl Γ}. We shall show

(5.3) N∗
0 (CW ) ∩ SS

(
RH omDX

(M , FU

w
⊗OX)

)
⊂ {0}.

Here N∗
0 (CW ) ⊂ T ∗X ∩ π−1(0) denotes the conormal cone. Note that

SS(CU) ∩ π−1(0) ⊂ {(0;−ζ); ζ ∈ Γ◦}, N∗
0 (CW ) = {(0; ζ); ζ ∈ Γ◦}.

Assume that (0; ζ0) ∈ N∗
0 (CW ) ∩ (V +̂ SS(FU)) and ζ0 �= 0. Then, since SS(FU) ⊂

SS(F ) +̂ SS(CU) by [K-S 2, Corollary 6.4.5], we have

(5.4) (0; ζ0) ∈ V +̂
(
SS(CU) +̂ SS(F )

)
.

Thus by (1.8) there exist sequences {(zn; ζn)}n∈N
⊂ V , {(z′n; ζ ′

n)}n∈N
⊂ SS(CU) +̂ SS(F )

such that

zn, z′n −→
n

0, ζn + ζ ′
n −→

n
ζ0.

Using (1.8) again, we can find sequences {(z′n,j;−ζ ′
n,j)}n,j∈N

⊂ SS(CU), {(z′′n,j; ζ
′′
n,j)}n,j∈N

⊂
SS(F ) such that

z′n,j, z′′n,j −→
j

z′n, −ζ ′
n,j + ζ ′′

n,j −→
j

ζ ′
n, |z′n,j − z′′n,j| |ζ ′

n,j| −→
j

0.

By extracting subsequences, we may assume that there exist sequences {(zn; ζn)}n∈N
⊂ V ,

{(z′n;−ζ ′
n)}n∈N

⊂ SS(CU) and {(z′′n; ζ ′′
n)}n∈N

⊂ SS(F ) such that

zn, z′n, z′′n −→
n

0, ζn − ζ ′
n + ζ ′′

n −→
n

ζ0.

Then the sequence {|ζn+ζ ′′
n|}∞j=1 does not converge to zero. Indeed, assume that |ζn+ζ ′′

n| −→
n

0. Then we see Γ◦a 
 −ζ ′
n −→

n
ζ0 ∈ Γ◦. Since Γ◦ is a proper convex closed cone, we have

ζ0 ∈ Γ◦ ∩ Γ◦a = {0}, which is a contradiction. Hence extracting subsequence, setting

cn := 1/|ζn + ζ ′′
n| > 0, we may assume that {cn}j∈N

and {cn(ζn + ζ ′′
n)}j∈N

converge to

some c ∈ R�0 and θ0 �= 0 respectively. Hence we have cn(ζn − ζ ′
n + ζ ′′

n) −→
n

cζ0 . In

particular, {cj(0, ζ
′
n)}j∈N

⊂ {0} × Γ◦ converges to θ0 − cζ0. Since {0} × Γ◦ is closed, we

have θ0 − cζ0 ∈ {0} × Γ◦. Thus we have

θ0 = θ0 − cζ0 + cζ0 ∈ {0} × Γ◦ + {0} × Γ◦ ⊂ {0} × Γ◦ ⊂ T ∗
Y X.
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Therefore, {(z′′n; cnζn)}n∈N
⊂ V and {(z′′n; cnζ

′′
n)}n∈N

⊂ SS(F ) satisfy:

z′′n −→
n

z0, cn(ζn + ζ ′′
n) −→

n
θ0, |z′′n − z′′n| |cnζn| = 0.

This implies (0; θ0) ∈ T ∗
Y X ∩ (V +̂ SS(F )), which contradicts (5.1). This proves (5.3).

Further, by supp
(
RH omDX

(M , FU

w
⊗OX)

)
⊂ W and [K-S 2, Corollary 5.4.9] we have

RH omDX
(M , FU

w
⊗OX)0 = RΓW RH omDX

(M , FU

w
⊗OX)0 = 0.

Therefore we obtain (5.2). �

Let g : L → M be a morphism of manifolds, and W ⊂ T ∗X a conic subset. Recall that

g is hyperbolic for W if:

Ṫ ∗
LM ∩ CT ∗

MX(W ) = ∅.
We denote by N a d-codimensional closed real analytic submanifold of M , and use the

notation in (3.2). We shall show the following:

5.2. Theorem. Let V and M satisfy Condition 4.8. Suppose that fN : N ↪→ M is

hyperbolic for V . Then there exist the following isomorphisms :

RH omDX
(M , W-νN(C∞

M )) ∼ → τ −1
N RH omDY

(MY , C∞
N )

RH omDX
(M , νN(C∞

M ))

�↓
∼→ τ −1

N RΓNRH omDX
(M , C∞

M )⊗ω⊗−1
N/M .

�↓

Note that the hyperbolicity condition implies that Y is non-characteristic for M in a

neighborhood of N .

Proof. We show:

(5.5) RH omDX
(M , W-µN(C∞

M ))
∣∣
Ṫ ∗

NM = RH omDX
(M , µN(C∞

M ))
∣∣
Ṫ ∗

NM = 0.

First, consider RH omDX
(M , µN(C∞

M )). By [K-S 2, Corollary 5.4.10], (4.11) and the hy-

perbolicity condition, we have:

supp
(
RH omDX

(M , µN(C∞
M ))

)
∩ Ṫ ∗

NM ⊂ Ṫ ∗
NM ∩ SS

(
RH omDX

(M , C∞
M )

)
⊂ Ṫ ∗

NM ∩ CT ∗
MX(V ) = ∅.

Next, consider RH omDX
(M , W-µN(C∞

M )). By the stalk formula ([C 1]), for any x∗ ∈
Ṫ ∗

NM and j ∈ Z we have

HjRH omDX
(M , W-µN(C∞

M ))x∗ = lim−→
U

HjRH omDX
(M , CU

w
⊗C∞

M )π(x∗) .

Here U ranges through the family of subanalytic open sets of M such that CN(Cl U)π(x∗) ⊂
Int{x∗}◦. Since the problem is local, we may assume that M = R

n−d
x′ × R

d
x′′ ⊃ N = {x ∈

M ; x′′ = 0} = R
n−d
x′ ×{0}, π(x∗) = 0 and that U has a form R

n−d ×Γ. Here Γ =
m⋂

j=1

Γj ⊂
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R
d is a proper convex subanalytic open cone with Γj = {x′′ ∈ R

d; 〈x′′, ξ′′j 〉 > 0} for some

ξ′′j ∈ R
d. By Theorem 3.2, we have

lim−→
U

RH omDX
(M , CU

w
⊗C∞

M )0 = lim−→
U

RH omDX
(M , CU

w
⊗OX)0 .

5.3. Lemma. CU

w
⊗
µ

OX

∣∣
Ṫ ∗X is concentrated in degree zero.

Proof. We set

W p,q
+ := {x ∈ R

n; 〈x′′, ξ′′1 〉 = · · · = 〈x′′, ξ′′p 〉 = 0, 〈x′′, ξ′′p+1〉 > 0, . . . , 〈x′′, ξ′′p+q〉 > 0}

and shall prove that CW p,q
+

w
⊗
µ

OX

∣∣
Ṫ ∗X in concentrated in degree −p.

Assume that p + q = 1. If (p, q) = (1, 0), then by Proposition 4.5, CW 1,0
+

w
⊗
µ

OX

∣∣
Ṫ ∗X is

concentrated in degree −1. If (p, q) = (0, 1), then setting W 0,1
− := {x ∈ R

n; 〈x′′, ξ′′1 〉 < 0},
we have CW 0,1

+
⊕ CW 0,1

−
→ CM → CW 1,0

+

+1−→. Hence we have

(CW 0,1
+

w
⊗
µ

OX) ⊕ (CW 0,1
−

w
⊗
µ

OX) → CM

w
⊗
µ

OX → CW 1,0
+

w
⊗
µ

OX
+1−→ .

Therefore Hj(CW 0,1
±

w
⊗
µ

OX)
∣∣
Ṫ ∗X = 0 for j �= 0 and the sequence

0 → H−1(CW 1,0
+

w
⊗
µ

OX)
∣∣
Ṫ ∗X →

(
H0(CW 0,1

+

w
⊗
µ

OX) ⊕H0(CW 0,1
−

w
⊗
µ

OX)
)∣∣

Ṫ ∗X → C d
M

∣∣
Ṫ ∗X → 0

is exact.

Next assume that we have proved the desired result for p + q = ν − 1. CW ν,0
+

w
⊗
µ

OX

∣∣
Ṫ ∗X

is concentrated in degree −ν by Proposition 4.5. Assume that CW p+1,ν−p−1
+

w
⊗
µ

OX

∣∣
Ṫ ∗X is

concentrated in degree −p − 1. Then setting

W p,ν−p
− := {x ∈ R

n; 〈x′′, ξ′′1 〉 = · · · = 〈x′′, ξ′′p 〉 = 0, 〈x′′, ξ′′p+1〉 < 0, . . . , 〈x′′, ξ′′p+q〉 > 0},
W ′ p,ν−p−1

+ := {x ∈ R
n; 〈x′′, ξ′′1 〉 = · · · = 〈x′′, ξ′′p 〉 = 0, 〈x′′, ξ′′p+2〉 > 0, . . . , 〈x′′, ξ′′p+q〉 > 0},

we have CW p,ν−p
+

⊕ CW p,ν−p
−

→ CW ′ p,ν−p−1
+

→ CW p+1,ν−p−1
+

+1−→. Hence we have:

(CW p,ν−p
+

w
⊗
µ

OX) ⊕ (CW p,ν−p
−

w
⊗
µ

OX) → CW ′ p,ν−p−1
+

w
⊗
µ

OX → CW p+1,ν−p−1
+

w
⊗
µ

OX
+1−→ .

By the induction hypothesis, we see that
(
CW ′ p,ν−p−1

+

w
⊗
µ

OX

)∣∣
Ṫ ∗X is concentrated in degree

−p. Therefore Hj(CW p,ν−p
±

w
⊗
µ

OX)
∣∣
Ṫ ∗X = 0 for j �= −p and the sequence

0 → H−p−1(CW p+1,ν−p−1
+

w
⊗
µ

OX)
∣∣
Ṫ ∗X →

(
H−p(CW p,ν−p

+

w
⊗
µ

OX) ⊕H−p(CW p,ν−p
−

w
⊗
µ

OX)
)∣∣

Ṫ ∗X

→ H−p(CW ′ p,ν−p−1
+

w
⊗
µ

OX)
∣∣
Ṫ ∗X → 0
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is exact. Therefore the induction proceeds.

In particular, CU

w
⊗
µ

OX

∣∣
Ṫ ∗X = CW 0,m

+

w
⊗
µ

OX

∣∣
Ṫ ∗X is concentrated in degree zero. �

By the preceding lemma and Theorem 4.9, we have

SS
(
RH omDX

(M , CU

w
⊗OX)

)
⊂ V +̂ SS(CU).

Hence we can apply the same method as in Proposition 5.1 to prove (5.5). Set W := {z ∈
C

n; Re z′′ ∈ Cl Γ}. We shall show

(5.6) N∗
0 (CW ) ∩ SS

(
RH omDX

(M , CU

w
⊗OX)

)
⊂ {0}.

Note that

SS(CU) ∩ π−1(0) ⊂ {(0;
√
−1 η′,−ξ′′ +

√
−1 η′′); ξ′′ ∈ Γ◦}, N∗

0 (CW ) = {(0; ξ′′); ξ′′ ∈ Γ◦}.

Assume that (0; ξ′′0 ) ∈ N∗
0 (CW ) ∩ (V +̂ SS(CU)) and ξ′′0 �= 0. Then by (1.5) there exist

sequences {(zj; ζj)}j∈N
⊂ V , {(x̃j;

√
−1 η̃′

j,−ξ̃′′j +
√
−1 η̃′′

j )}j∈N
⊂ SS(CU) such that

zj, x̃j −→
j

0, ζj + (
√
−1 η̃′

j,−ξ̃′′j +
√
−1 η̃′′

j ) −→
j

(0, ξ′′0 ), |zj − x̃j| |ζj| −→
j

0.

In particular, we have

(5.7) ξj − (0, ξ̃′′j ) −→
j

(0, ξ′′0 ), |yj| |ηj| � |zj − x̃j| |ζj| −→
j

0.

Then the sequence {|ξj|}∞j=1 does not converge to zero. Indeed, assume that |ξj| −→
j

0.

Then by (5.7), we see Γ◦a 
 −ξ̃′′j −→
j

ξ′′0 ∈ Γ◦. Since Γ◦ is a proper convex closed cone, we

have ξ′′0 ∈ Γ◦∩Γ◦a = {0}, which is a contradiction. Hence extracting subsequence, setting

cj := 1/|ξj| > 0, we may assume that {cj}j∈N
and {cjξj}j∈N

converge to some c ∈ R�0

and θ0 ∈ R
n \ {0} respectively. Hence we have cj(ξj − (0, ξ̃′′j )) −→

j
(0, cξ′′0 ). In particular,

{cj(0, ξ̃
′′
j )}j∈N

⊂ {0} × Γ◦ converges to θ0 − (0, cξ′′0 ). Since {0} × Γ◦ is closed, we have

θ0 − (0, cξ′′0 ) ∈ {0} × Γ◦. Thus we have

θ0 = θ0 − (0, cξ′′0 ) + (0, cξ′′0 ) ∈ {0} × Γ◦ + {0} × Γ◦ ⊂ {0} × Γ◦.

Thus we write θ0 = (0, θ′′0) �= 0. By virtue of (5.7), the sequence {(zj; cjζj)}j∈N
⊂ V

satisfies

(xj; cjξj) −→
j

(0; 0, θ′′0), |yj| |cjηj| −→
j

0.

By (1.4), this implies that (x0; θ
′′
0) ∈ Ṫ ∗

NM∩CT ∗
MX(V ), which contradicts the hyperbolicity

condition. Hence we obtain (5.6). Further by supp
(
RH omDX

(M , CU

w
⊗OX)

)
⊂ W and

[K-S 2, Corollary 5.4.9], we have

RH omDX
(M , CU

w
⊗OX)0 = RΓW RH omDX

(M , CU

w
⊗OX)0 = 0.

Therefore we obtain (5.5).
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In view of Propositions 3.4 and 3.5, we have by (5.5)

RH omDX
(M , W-νN(C∞

M )) ∼ → τ −1
N RH omDY

(MY , C∞
N )

↓ ↓
RH omDX

(M , νN(C∞
M )) ∼→ τ −1

N RΓNRH omDX
(M , C∞

M )⊗ω⊗−1
N/M .

Further by (3.3), (3.4) and (5.5), we have

f −1
N RH omDX

(M , C∞
M ) ∼ → RH omDY

(MY , W ∞
M,N) ∼→ RH omDY

(MY , C∞
N )

f −1
N RH omDX

(M , C∞
M )

���
∼→ RΓNRH omDX

(M , C∞
M )⊗ω⊗−1

N/M .

�↓

The proof is complete. �

5.4. Remark. Let V , M and fN : N ↪→ M be as in Theorem 5.2. Then by (3.3) and

proof of Theorem 5.2, there exists the following commutative diagram (cf. [K-S 1]):

RH omDX
(M , W-νN(C∞

M )) ∼→ RH omDX
(M , νN(C∞

M )) → RH omDX
(M , νN(BM))

τ −1
N RH omDY

(MY , C∞
N )

�↓
=== τ −1

N RH omDY
(MY , C∞

N )

�↓
→ τ −1

N RH omDY
(MY , BN).

�↓

6. Hyperbolic Cauchy Problem for C∞ Functions.

In this section, we consider a hyperbolic Cauchy problem for C∞ functions.

6.1. Theorem. Let fN : N → M be a morphism of real analytic manifolds and f : Y → X

a complexification. Let V and M satisfy Condition 4.8. Suppose that fN is hyperbolic for

V . Then there exists the following isomorphism:

f −1
N RH omDX

(M , C∞
M ) � RH omDY

(Df ∗M , C∞
N ).

Proof. (i) Suppose that f is smooth. Then, by [K-S 3, Theorem 3.3], we have

f −1
N RH omDX

(M , C∞
M ) = RH om

f −1
N i−1DX

(f −1
N i−1M , RH omDA

N
(DA

N→M , C∞
N ))

� RH omDA
N
(DA

N→M

L
⊗

f−1
N DA

M

f −1
N i−1M , C∞

N ) � RH omDY
(Df ∗M , C∞

N ).

(ii) Suppose that f is an embedding of a closed submanifold. Restricting isomorphisms

of Theorem 5.2 to the zero-section N , we obtain:

(6.1) f −1
N RH omDX

(M , C∞
M ) ∼→ RH omDY

(MY , C∞
N ) = RH omDY

(Df ∗M , C∞
N ).

(iii) In general, we decompose f by the graph embedding:

Y
g−→ Z := Y × X

h−→ X, f = h ◦ g.
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Here g : Y 
 y �→ (y, f(y)) ∈ Y ×X and h is the canonical projection. We identify Y with

g(Y ). Set L := N×M ⊂ Z. Then Dh∗M has regular singularities along Ṽ := hd h−1
π (V ),

and we easily see that

Ṫ ∗
NL ∩ CT ∗

LZ(Ṽ ) = ∅.

Thus by (i) and (ii) we have

f −1
N RH omDX

(M , C∞
M ) � g−1

N RH omDZ
(Dh∗M , C∞

L ) � RH omDY
(Dg∗Dh∗M , C∞

N )

= RH omDY
(Df ∗M , C∞

N ).

The proof is complete. �

7. Remark on One-Codimensional Case.

In this section, we assume that N is a one-codimensional closed submanifold of M in

(3.2). Let M be a coherent f −1DX-Module. Assume that Y is non-characteristic for M .

We consider:

7.1. Condition. M satisfies:

f −1
N RH omDX

(M , C∞
M ) � RH omDY

(MY , C∞
N ).

7.2. Theorem. Assume Condition 7.1. Then there exist the following isomorphisms :

τ −1
N f −1

N RH omDX
(M , C∞

M ) ∼→ τ −1
N RH omDY

(MY , C∞
N )

RH omDX
(M , W-νN(C∞

M ))

�
↓

∼→ τ −1
N RH omDY

(MY , C∞
N ).

�����
Proof. Since the problem is local, we assume that X = C

n
z×Cτ ⊃ Y = {(z, τ) ∈ X; τ = 0}

and so on. Hence f(z, τ) = τ . We set for short, v := (0; 1 d/dt) ∈ ṪNM , p := (0; 1 dt),

pa := (0;−1 dt) ∈ Ṫ ∗
NM . We identify ωN/M [−1] with ZN , and we may prove:

RH omDX
(M , W-νN(C∞

M ))v � RH omDY
(MY , C∞

N )0 .

By (3.3), (3.4) and Condition 7.1, we have

(7.1) RH omDX
(M , W-µN(C∞

M ))p ⊕ RH omDX
(M , W-µN(C∞

M ))pa = 0.

Hence by Proposition 3.4, we obtain

RH omDX
(M , W-νN(C∞

M ))v � RH omDX
(M , W ∞

M,N)0 � RH omDY
(MY , C∞

N )0 .

The proof is complete. �
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7.3. Example. Let P (z, τ, ∂z, ∂τ ) be a differential operator of order m on X, and set

M := DX

/
DXP . Assume that P has the following form:

P (z, τ, ∂z, ∂τ ) = ∂ m
z +

m−1∑
j=0

Pj(z, τ, ∂z) ∂ j
τ .

Note that Y is non-characteristic for M . We impose the following:

7.4. Condition. (1) There exist holomorphic functions η − λj(z, τ ; ζ) (1 � j � m) such

that each λj(z, τ ; ζ) is a polynomial with respect to ζ of degree one, and that

σm(P )(z, τ ; ζ, η) =
m∏

j=1

(η − λj(z, τ ; ζ)).

(2) If (x, t) ∈ M and ξ ∈ R
n, then λj(x, t; ξ) ∈ R.

For P satisfying Condition 7.4 (1), Uchikoshi [Uk] defined a rational number IrrP ∈
[1, m]. We briefly recall the definition. Set Λj(z, τ, ∂z, ∂τ ) := ∂τ−λj(z, τ, ∂z) ∈ Γ (X; D (1)

X ).

For 1 � q � m, set Sq := {µ = (µ1, . . . , µq) ∈ N
q; 1 � µi � m, i �= j ⇒ µi �= µj},

S0 := {0} and S′ :=
m−1⋃
q=0

Sq. For µ = (µ1, . . . , µq) ∈ Sq, we set |µ| := q (with convention

|0| := 0) and Λµ(z, τ, ∂z, ∂τ ) := Λµq
(z, τ, ∂z, ∂τ ) · · ·Λµ1

(z, τ, ∂z, ∂τ ) ∈ Γ (X; D (|µ|)
X ) with

convention Λ0 := 1. Then for any σ ∈ Sm, we can write

P (z, τ, ∂z, ∂τ ) = Λσ(z, τ, ∂z, ∂τ ) +
∑
µ∈S′

(τ |µ|−maσ
µ(z, τ) + bσ

µ(z, τ, ∂z))Λ
µ(z, τ, ∂z, ∂τ ),

where ord bσ
µ � m − |µ| − 1. This expression is referred as a Lascar decomposition subor-

dinate to σ. For each Lascar decomposition, we set

κσ := max{1, max
µ∈S′

{ m − |µ|
m − |µ| − ord bσ

µ

}}.

Then, setting irrσP := min{κσ; Lascar decompositions subordinate to σ}, we define:

Irr P := max{irrσP ; σ ∈ S
m}.

Then Uchikoshi proved:

7.5. Theorem ([Uk]). If P satisfies Condition 7.4 and Irr P = 1, then Condition 7.1 is

satisfied :

f −1
N RH omDX

(M , C∞
M ) � RH omDY

(MY , C∞
N ) = (C∞

N )⊕m.

Hence in this case, Theorem 7.2 holds.
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