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HANKEL OPERATORS ON HARMONIC BERGMAN SPACES
KEITA OSHIMA

ABSTRACT. Let {2 be a bounded smooth domain in R"(n > 2). In this paper, we
study Hankel operators H; on harmonic Bergman spaces b”(2) for 1 < p < cc.
We present a necessary and sufficient condition for H¢ to be bounded or compact
on both b7 and its dual space.

1. INTRODUCTION

Let {2 be a bounded smooth domain in R"(n > 2) and V' be the Lebesgue measure
on R". For 1 < p < oo, the L” harmonic Bergman space b” = bP((2) is the set of all
complex-valued harmonic functions v on {2 for which

1/p
foll = ([ 1pav)  <oc
(9]

Also, we let b> denote the space of all bounded harmonic functions on 2. It is
known that b is dense in each b”.

As is well known, b7 is a closed subspace of LP = LP({2,V') and hence a Banach
space. In particular, b? is a Hilbert space. Each point evaluation is a bounded linear
functional on b?. Hence, for each x € (2, there exists a unique function R(z,-) € b?
which has the following reproducing property:

ﬂmzﬂgwmmw@

for all f € b®. The reproducing kernels R(z,-) are known to be symmetric and real-
valued. Let @ be the Hilbert space orthogonal projection from L? onto b?. Then,
the following integral formula holds:

mmwzémemwyafn (1-1)

for all f € L?. For each fixed = € (2, the function R(z,-) is known to be bounded
on (2. Thus, the operator @) defined by (1-1) extends to an integral operator from
L' into the space of all harmonic functions on 2. Moreover, for 1 < p < oo, it is
known that () is a bounded projection from LP onto bP.

Let 1 < p < oo and f € L'. The Hankel operator H; with symbol f is densely
defined on b” by

Hyu = (I - Q)M (1-2)

for u € b>°, where My is the multiplication operator defined by Mg = fg.
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2 K. OSHIMA

Let f € L'. The commutator with symbol f is defined by Cy = M;Q — QM;. If
g € L™, then it is easy to see that Crg is well defined. Since L is dense in every
LP, Uy is densely defined on L for each 1 < p < co. As we will see, there is a close
relationship between Hankel operators and commutators.

In this paper, we study Hankel operators on harmonic Bergman spaces b” defined
on a bounded smooth domain in R" for 1 < p < co. We present a necessary and
sufficient condition for H; to be bounded or compact on both b” and its dual space.
The results of this paper extend those in [Mia] on the unit ball to general bounded
smooth domains in R".

This paper is organized as follows. In Section 2, we state our main results. In
Section 3, we collect some preliminary results that we will need. In the last section,
we prove our main result.

Acknowledgement. The author would like to thank Professor Hitoshi Arai for his
help, encouragement, and advice. He also thanks Dai Wakisaka for useful discussions
during the preparation of this paper.

Notation. Throughout the paper, the exponent p’ will always denote the conjugate
exponent of p, i.e., 1/p+1/p' =1, for 1 < p < co. xg denotes the characteristic
function of a set S C R™. We also use the notation A < B if there exists a positive
constant C' such that A < C'B. Also, we write A~ Bif A< B and B < A.

2. MAIN RESULTS
Let 1 <p<ooandde€(0,1). For z € 2, let r(x) = dist(z, df2) and
Es(z) ={y € 2:|y —z| < or(x)}.

Since § < 1, Es(z) is actually the euclidean ball with center at = and radius dr(z).
For f € LP, we define

NVIS ) = ey O

MOY(S:2) = gy [ 1F0) ~ B

The Bloch space B and little Bloch space By are defined by
B={feC(2):supr(x)|Vf(r) < oo},
e
By={feC"R):r(x)|VFf(x)] = 0as x — 0}
The space BMY and its subspace VMY are defined by
BM, ={feLl: sugMVlg(f;x) < o0},
xre

VMS = {f € L? : MV§(f;2z) — 0 as & — 002}.
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Since MVE(f;x) = (|f|?)s(z), Theorem 3.5 and Theorem 3.11 of [CLN] indicate
that BM§ and VMY are independent of the choice 0. So, we may drop ¢ and simply
write BM? = BM§ and VM? = VMZ.

The space BMOY and its subspace VMOY are defined by

BMOy ={f e L": sggMO?(f;x) < o0},
VMOY = {f € L? : MO}(f;x) — 0 as x — 002}.

We will see later that BMOY and VMO are independent of the choice §. Therefore
0 will be dropped in the future references to these two spaces.
Let 1 < p < ¢ < co. A simple computation using Holder’s inequality gives

MVE(f; )P < MVY(f;2)Y7 MO(f; )Y < MOY(f; ). (2-1)
Thus, we have
BMY ¢ BM?, VM‘cC VM?, BMO?cC BMO?, VMO?cC VMOP.

Furthermore, it is easy to see that these inclusions are proper. For example, if f is
a function with compact support in (2 such that f is in L? but not in L9, then f is
in VMO? but not in VMO?.

The main result of this paper is the following theorem, which extends the results
obtained by J. Miao in [ Mia|.
Theorem 2.1. Let p € [2,00) and f € LP.

(a) Hy is bounded on both b’ and W' if and only if f € BMOP.
(b) Hy is compact on both b and b if and only if f € VMOP.

The following two corollaries are immediate consequences of the theorem above.

Corollary 2.2. Let f € L.
(a) Hy is bounded on b* if and only if f € BMO®.
(b) Hy is compact on b? if and only if f € VMO?.
Corollary 2.3. Let p € [2,00) and f € bP.

(a) Hy is bounded on both P and W if and only if f € B.
(b) Hy is compact on both b* and b if and only if f € By.

3. LEMMAS
Recall that r(z) = dist(z, 012) for x € 2. For € > 0, we set
2. ={yeR:r(y) = e},

and D. = 2\ (2.. Let 7 be the normal projection to 92, namely, for x € {2 near
082, m(x) is the closest point of 02 to z. Then the smoothness of the boundary 012
implies that there exists g9 > 0 such that

(a) r is a smooth function on D,,.

(b) The projection 7 : D., — 012 is well-defined and smooth.
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(c) For t > 0 with ¢ < g, the projection 7|sgq, : 02, — 02 is one to one and
onto, and 1 € 02, can be written as n = 7(n) + ¢t Nx(,. Here and elsewhere,
n¢ denotes the inward unit normal to 92 at ( € 012.

(d) Vr(n) = ng, for n € D,,.

(e) For all 0 < ¢ < gy and nonnegative continuous functions f on Dk,

Df@Mw%l;ﬂfﬂ<+“%MMw@% (31)

where o denotes the surface area measure on 0f2.

See [KP] and [EG] for more information and proofs.

Lemma 3.1. Let 6 € (0,1). Then we have

(1—=0)r(z) <r(y) < (1+)r(z) (3-2)
for all x € 2 and y € Es(x).
Proof. See Lemma 3.1 of [CLN]. O

Lemma 3.2. Let 6 € (0,1) and x € 2. If y € Es)3(x), then Es/3(y) C Es(x) and
Esys(x) C Es(y)-

Proof. The proof is essentially the same as that of Lemma 5 of [Mia]. O
Lemma 3.3.
(a) There is a constant Cy depending only on 2 such that
Ci' < R(z,2)r(2)" < Cy (3-3)

for all x € £2.
(b) Let § € (0,1). Then there is a constant Cy depending only on §2 such that

|R(y7 Z) _ R(JI,(E)| < C’16
| R(z, z)| (=)t
forallx € 2 and y,z € Es(x).

(3-4)

Proof. Part (a) is an easy consequence of Theorem 1.1 of [KK|. Now we prove (b).
By Theorem 1.1 of [KK], there is a constant C' such that

C C
< <
ViR, 2)] < d(y, z)mt =yt
C C
IV.R(y, z)| <

< .
d(y, z)"+t = r(y)m

for all y,z € £2, where d(y,2) = |y — z| + r(y) + r(2). For y € Es(x), (3-2) shows
r(y) > (1 = 0)r(z). Thus for y, z € Es(x),

C
< <
N (e LT e
VR € o € S

Py S =0 ()T
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If y, z € Es(x), then Mean Value Theorem gives
|R(y,2) = R(z,z)| < sup  (|[VuR(u,v)lly — 2[4+ [V R(u,v)||z — z|)

u,vEFEs(x)
< 206
e ErEn
Combining this with (a), we obtain (b). O
Lemma 3.4. Let5€( 1) andp € [1,00). If f € LP, then
MO(f: ) < / / F(2)Pdzdy < 2PMOP(fi2)  (35)
Bs(x) J Bs(@
for all x € 2.

Proof. For every y,z € (2,
F) = FEI< 1) = Fs@) +1£(2) = fi(=)],

and therefore

1f(y) — F)IP < 227N f(y) — Fs(@) P + | f(2) — Fs(2)]P).

/Eé(x /E . F(2)Pdz dy
/Eé(x /E (£ () = F5(@)P + £ (2) — fs()P)dz dy
2p 1

= o [ 1) By / dz x 2 = 2 MOY(f: ).
V(Es(r))? /155(:1;) Es(x) ’
On the other hand, we have

P(fe ) — 1 ot 2)dz

MOSE) = S /EM 10~ @) /Em) J(=)d
1 P

< W /E(;(x) (/155(55) |f(y) — f(Z)|dZ> dy.

Applying Holder’s inequality, we get

Thus

p

dy

NOZS: ) < G o L 0 = S Py =
Es(z) J Es(a
Remark. If p = 2, then it follows from a direct computation that
FEG oo o 170 = Sdzdy =203
Es(x) J Es(x

for all z € (2.
Lemma 3.5. Let p € [1,00) and § € (0,1). Then B C BMO§ and By, C VMOJ.
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Proof. Suppose f € B and x € 2. For y € Es(x), it follows from Mean Value
Theorem that

[F(y) — f(2)]

IN

— X su r\z z M
(zesfil?@'vf(z”) ly — x| < (ZGES%) (2)IV( )|> =)

5
<713 (ZES;I?I)T(Z)IW(M) :

The second inequality above comes from (3-2). It is easy to see that

MO3(f12) < ey / . /E y F(2)Pdz dy
2p !
p z)|P)dz d
/EN)/M (£ () — F@P +17(2) — F(@)P)dzdy
=W/M 5) — Sy

< (%) (Zes;ggw)r@)wf(aop'

This shows that f € BMOY as desired.
Suppose f € By, then for any £ > 0, there exists p > 0 such that r(z)|Vf(2)| < e
for all z € 2 with r(z) < p. For x € 2 with r(z) < p/(1+ ), we have by (3-2)

r(z) < (1+9)r(x) <p forz e Es(z).

Therefore
sup 1(2)|Vf(z)] <e

z€Es(x)

for all x € 2 with r(x) < p/(1 + 0). It follows that
25 \" !
MOj(fi) < (1225) ( sw r@IVIEN ) 0
1-96 z€Es(x)
as ¢ — 0f2. Thus f € VMOY and we are done. O
Lemma 3.6. Letp € [1,00) and d € (0,1). Then BMP? C BMO% and VM? C VMOZ.

Proof. Suppose f € BMP. By Holder’s inequality, we have
-~ 1

| fs(z) P = ‘W/E(;(x)f(y)dy

: m (/E(g(z) |f(y)|pdy) </E§(z) dy)pl

1

= VB @) /Eé(x) |f(y)|Pdy = MV§(f; 7).

p
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Thus
M%uww:ﬁﬁﬁgl%Jﬂw—ﬁuW@
2r P Fi ()P
svﬁﬁﬁémwwn+mmuw

< 27N (MVE(f;2) + | fs(2)F) < 22 MVE(f;2).
This shows that BM? € BMOY and VM? ¢ VMOX. O

We have shown that B + BM? ¢ BMOY and By + VM? ¢ VMO}. We wish to
show the converse inclusions BMOY C B + BM? and VMOY C By + VMP. This also
means that BMO} and VMOY are independent of the choice 0. To prove this, we
need the next lemma.

Lemma 3.7. Let § € (0,1). Then, there exists a smooth nonnegative function 1) on
(2 x £2 which satisfies the following conditions:

(a) For each x € 2, Y(x,y) =0 if y ¢ Es/3(x) and

[ vty =1 (3-6)

(b) There are constants Cy, Cy depending only on 2 and & such that
¥z, y)| < Cor(z) ™, (3-7)
Vop(@,y)| < Crr(z) ™! (3-8)

forall z,y € (2.

To construct a function satisfying the above lemma, we need a smooth defining
function by which the distance function r is bounded above and below. Let p be a
smooth defining function for {2 such that p(z) = r(z) for 2 € 2 close enough to 012
(see Section 1.2 of [KP ). Then, it is easy to see that there exists a constant R such
that

R—lg%gfz for all z € 2.
A

We can also take a constant M which satisfies |Vp(x)| < M for all z € (2.

P
r

Proof of Lemma 3.7. Let ¢ € C5°(R") be a nonnegative function on R™ with support
inside B(0,0/3) = {y € R" : |y| < §/3} such that [, ¢dV = 1. For z,y € 2, we

define .

We prove that ¢ defined above satisfies (a) and (b).
Let x € 2. If y ¢ Ej3(x), then
8 Rly — x|

J
ly — x| > gr(a:) > ﬁp(az), and we have
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Since supp ¢ C B(0,0/3), it follows that ¢(z,y) = 0 if y & Ej/3(x). Next, by change
of variables, we get
[ vy = [ oav =1
2 Rn
To prove (b), let

C(o) = sup max{|p(z)[,[D16(2)],- .., |Dnd(2)]},

then

el <00 ()

and we get (3-7). Note that for x € 2 and y € Ej/3(x),
Vevta = (5755) v (o (™)) + e (B0,
Since V(p(x)™) = —np(x) " Vp(z), we have

7 |9(pta) 0 (L= < k(o) (sup 9G] ) o)

p(x

3¢ ()| < Z o) ("o o

Sin
o, (™) | = | e 2 )
< iy M
we obtain
3t (o)< Z o) ()| Gy +

o\ 1 R
< M2) M2 2
(o) (415 7 < 00 (e M5
The second inequality follows from the fact that (Dy¢)(R(y—x)/p(z)) = 0if |y—z| >

(0p(x))/(3R). Thus,

()

< nyn C(9) (R + M%) %.
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Therefore, we obtain
2

V2 (z,y)| < (%) nyv/n C(¢ <R+M ) e + RO ($)M r(z) L
ZnR%“CwO<J_<R+AJ) M>
and we are done. 0

Now, we can prove the following lemma.

Lemma 3.8. Letp € [1,00) and 6 € (0,1).

(a) BMO? = B + BM?.
(b) VMO? = By + VM.

Proof. We have already seen that B + BM? ¢ BMO} and B, + VM? ¢ VMOE.
To prove that BMOY C B + BM?, let f € BMOY and let ¢(z,y) be given by

Lemma 3.7. Let
- [ fuwta

and fo = f — f1. Note that f; is continuously differentiable. For y € {2, we have by

(3-6) and (3-7),
L ' C()p — z z !
fa(y)l = < ( / @ =i >|d)

/Q (f(0) — F(2))b(y. 2)d=

l
—
-
—~
s
=
QU
Q

Thus
1

MV§/3(f2;x) = W /Eé/g(z) | f2(y)[Pdy

1 1
S——— _— — Pdz dy.
~ V(Eg/g;(l‘)) /E(;/S(m) V(E5/3(y)) /E‘5/3(y) |f(y) f(Z)| zay
Because r(x) ~ r(y) and E5/3 ) C Es(x) if y € Es/3(x), we have
NV (52) S gy Lo o, F0) — FEPdy S MOKF52). (310

This implies that f, € BMP”.

Next we prove that f, € B. By Lemma 3.4 of [ CLN ], there is a sequence {a,,} in
(2 such that (J,, Fs/3(an) = £2. Thus, for every x € {2, there is some a,, such that
r € Es/3(am). By (3-6), we have

fie) = /Q (F) = Foysam)) (e, 9)dy + Fiys(am).
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and it follows from (3-8) that

r(@)|V fi(z)] < Cﬂ‘(w)_”/ £ (y) = Foys(am)ldy.

Es/3(@)

Since
1

W) = faslan)| < G msy

we have by Lemmas 3.1 and 3.2

1 1
r(2)|V fi(7)] S V(B @) /Em(x) V(Esalam) /Ea/g(am) |f(y) — f(2)|dz dy

1 gy
S VEGT /E » [E M) = 12l dy S MO} ),

r(@)|V fi(2)] S MO(f;2) < MOj(f;2)'7. (3-11)
This shows that f; € B and finishes the proof that BMO} C B + BMP”.

If we let f € VMOY, then (3-10) indicates that f, € VMP. By (3-11), we have
f1 € By. The proof is complete. O

/ @) - F(2)ldz,
Es/3(am)

By (2-1),

It follows from the above lemma that BMO} and VMO are independent of the
choice 4.

Let H be the set of all complex-valued harmonic functions on (2.
Lemma 3.9. Let p € [1,00).

(a) BMOPNH =BNH.

(b) VMO* N"'H = ByNH.
Proof. By Lemma 3.5, we have

BNH CBMO’NH and ByNH C VMO’ N'H.

To show the converse, let a € £2 and x € Es/3(a). Then, by Lemmas 3.1 and 3.2,
V(E(g(a)) SJ V(E&/g(x)) and Eg/g(l‘) C E(;(a). For f - H,

1
1)~ 10 < G / ) = F@ay

Since f(a) = fA[;(a) by the mean-value property, we have
1 .
@)= 1@ S gy [ 1) = Faldy
V(Es(a)) Es(a)
= MO;(f;a) < MOj(f;a)"/?.
By Cauchy’s Estimates (see, for example, 2.4 of [ABRY]),

MO®(f;a)'/?
V@IS sw (Vi@ = sw V(@) - fa) s SO
IGE(;/S((I) Z€E5/3((l) T(G/)
Since a € (2 is arbitrary, we conclude that BMO? "H € BNH and VMOP N'H C
By NH. O
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In order to prove Theorem 2.1, we need the following lemma which indicates the
relationship between Hankel operators and commutators.

Lemma 3.10. Let p € (1,00) and f € L',
(a) C} is bounded on LP if and only if Hy is bounded on both b’ and V¥ .
(b) Cy is compact on L if and only if Hy is compact on both 0P and v

Proof. Let p € (1,00) and f € L'. Suppose that H; is bounded on both b” and v It
we let Hy = Hy(Q), then Hy is bounded on LP. Since Hyu = Hyu, the boundedness

of Hy on b yields that ﬁ? is bounded on L¥. Thus the adjoint operator f]} is
bounded on LP. Let v € C§°(£2) and write u = Q[u] + (I — @)[u]. Then

Cru= MQ[Q[u] + (I — Q)[u]] — Q[M(Q[u] + (I — Q)[u])]
= (I = Q)IM;Q[ul] — QMy(I — Q)[u] = Hpu — Hu.
Now H 7 and j-vli are bounded on LP. Thus Cy is bounded on L?, as desired.

Next we show the “only if” part. Suppose C} is bounded on LP. For u € b,
Cyu = Hyu, and so Hy is bounded on b7. Also, H = Hf — Cy is bounded on LP

and thus H— is bounded on L*". It follows that H ¢ is bounded on W
It is easy to see that the same proof as above also works for compact operators.
The proof is complete. ]

Lemma 3.11. Let 1 < p < co. Then

o) - _
/ r(x LGOI </|Vh, »)|Pde, (3-12)
( / V@)l (3-13)

)P
for all h € C3°(£2).

Proof. Since the proofs of (3-12) and (3-13) are essentially the same, we only prove
(3-13). Let € = g¢ where ¢q is the number provided by the first part of this section.

Then,
|h < |h )|Pdx.
0. T(x 621’

Poincaré’s inequality shows that

/Q |h(z)|Pdr < /Q \Vh(z)[Pdz.

Since 1 < 1/r(z) for x € 2, we have

|h(z)|? o Va@)P ]
/QE T(x)dexS/QWh(xﬂ d 5/9 e (3-14)
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For ( € 02, let v = (+sn; € D., 0 <s < ¢, where n, is the inward unit normal
to 042 at (. If we write w; = ( +tn., 0 <t <s, then

oP = [ gt py
/ ol 1Z|D By dt

7j=1
< / () [P [
0

It follows from Fubini’s theorem that

“lh(C + sme) P Y _ 1
/O“desg/o /0 B+ QP [VA(C + trg)ldt g ds
€ £ 1
:/ |h(C+tnC)|p1|Vh(C+tn<)|/ s
0 t

c 1
S [ IHC+ trQ P VA + 0l
0

Therefore, we have by (3-1)
()P “[A(C+ smlP
o st f et
S [ [ enlr VR + gt do0)

~ [ @A) e

|, e
P\ AP\ P
<(/sewe) (L Se)

p p
[ ety o [ T,
. ()% D, r(z)P
Combining this with (3-14), we obtain (3-13). O

This implies that

Corollary 3.12. Let 1 < p < oco. Then

p
Tapte S [ e s 1

I7; 7"(95) )P

for all h € C3°(12).
Proof. By (3-13), we have

W) V)P
/Qrm%dxs/g oy
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By (3-12), we have

[Tk, <3 [ 1A,
(o)

<3 / V(D)) Pdz < /Q Ah(x)da,

where the last inequality comes from Proposition I11.1.3 of [Ste], page 59. This
completes the proof of Corollary 3.12. 0

Lemma 3.13. Let 1 < p < oo and (W)* = {u € L : (u,v) =0 Vv € b?}. Then
{Ah:h e C(02)} is dense in (bP)*.

Proof. 1f h € C§°(£2), then
(Ah,v) = (h,Av) =0
for all v € b”. So we have
{Ah:heCr(02)} C (b)*.
Next, suppose u € L” and
/ uAhdV =0
I7;

for all h € C§°(£2). Then Weyl’s lemma (see Theorem 2.3.1 of [Mor]) shows that
u € bP. This completes the proof. 0]

Lemma 3.14. Let 1 < p < oco. Then
[ r@rvu@pds 5 [ ju@ps
£ 0]
for all uw € O

Proof. If x € 2, then r(y) =~ r(z) for y € Eyu(x) or v € Es/4(y) by (3-2). By
Corollary 8.2 of [ABR |, we have

1
Vu@)l S v [ )Py
T(x)n+p Eq)4(2)

It follows easily from Lemma 3.2 that xp, @) (y) < X&), (®) for all z,y € £2.
Therefore, we get

[ rarvu@pis s [ — [ o @lwPad
e
< [ lutw E3/4 iy [ wpay.
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4. PROOF OF THE MAIN RESULT
We divide the proof into three lemmas.

Lemma 4.1. Let p € (1,00).

(a) If f € B, then Hy is bounded on bP.
(b) If f € By, then Hy is compact on bP.

Proof. First, we prove (a). Let f € B. By Lemma 3.13, we only need to show
| (Hpu, Ah) | = [ (fu, Ah) | < Cllullp[| ARl

for any u € b> and h € C§°(£2) in order to prove the boundedness of H;. Using
integration by part, we have

(Fu, AR) — —/Qu(Vf) - (vﬁ)dv+/n(w) VARV = I, + I,

It follows from Holder’s inequality and Corollary 3.12 that
Vh(x
|| < / |u||V f||VR|dV < / Ju( || ))Idm

< </Q|u(a:)|pdx> (/Q %dw) /§||u||p||AhIIpf-

On the other hand, using Holder’s inequality again, we get

n(z)
Bl < [ 1vul Ay S [ @) vue) G

(fermaons)” ([ B2 )

Thus, Lemma 3.14 and Corollary 3.12 yield
o S Nlullpl| ARy

This completes the proof of (a).

To prove (b), let u; — 0 weakly in b”. Then, it is well known that there is a
constant M satisfying |ju;||, < M for all j, and wu; goes to 0 uniformly on each
compact subset of 2. For any € > 0, there is a compact set K C {2 such that
r(x)|Vf(z)] < e for x € 2\ K. Also, we can choose j, such that |u;(z)| < e,
|Vuj(z)| <eforx € K and j > jo, by Theorem 1.23 of [ ABR]. For j > jj, we have
by Corollary 3.12 and Lemma 3.14

[ wvavnay = [+ [ ivsivna
Q AK

h h
5/ e Y |dV+/5de
O\K K r

S ellugllp[[IVAl/rlly + el [VAl/rlly S e(M + 1| Ak,
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and

[ wutvsisay = [ [ 19ue i
5/ r|Vu;|e @anL/ 6@&/
K r K T
S ellrIVul Il R/l + ellh/r? ||y
S elluillpl|Anlly + el Ahlly < e(M + 1)|| Ak
Therefore, we have
| (Hyuj, Ah) | S e(M + 1) || ARy
for j > jo, and this shows that ||Hsu;|[, — 0 as j — co. The proof is complete. [

Lemma 4.2. Let p € (1,00).
(a) If f € BMP, then Hy is bounded on bP.
(b) If f € VMP, then Hy is compact on bP.

Proof. If f € BM? or VMP, Theorem 3.5 or Theorem 3.11 of [CLN | implies that
the multiplication operator My is bounded or compact on 07, respectively. Thus
Hy = (I — Q)M is bounded or compact on b, respectively. O
Lemma 4.3. Let p € (1,00) and f € L”.

(a) If Hy is bounded on both b7 and W', then f € BMOP.

(b) If Hy is compact on both bP and W, then f € VMOP.

Proof. (a) Suppose H; is bounded on both b and . By part (a) of Lemma 3.10,
Cy is bounded on LP. Let § € (0,1) and define

R(y, )
R(z,x)

It follows from Lemma 3.3 that for all z € 2 and y, z € Es(x)
_|R@.2) ~ Rza) _ Cw

— 1.

S(x,y,2) =

|S($,y, Z)| |R(Z’,x)| — (1 _ 6)n+1‘ (4_1)
By definition, we have
_ Ry, 2)
1= Rwz) S(z,y, z),
and it follows that
Pf ) 1 _ i !
MOYS:9) = G oo |, (P~ S 1|
2r-1 B R(y,z) , |
< V(Es(z))rtt /155(:5) /E(;(q;)(f@) f(z))R—(x,x)dZ dy
2p71 p
+ VB 5y E5(x)(f(y) — [(2))S(z,y,2)dz| dy =: 1) + .
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We can estimate I; as follows:
or—1
V(E(;(ﬁb))p|R(.’L‘,l')|p E;s(x)

/Q (F() — F(2)R(y, Yha(2)dz

p

oy B2
/Ea(x)(f(y) At ))V(Eé(fv))l/pd

P

dy,

I =

2r—1
<
— VI(Es(x)P| Rz, x)[P /9
where
ha(e) = e
V(E5(x))H/
It follows from Lemma 3.3 that, there is a constant C5 independent of § such that
2p—1 < @
V(Es(x))P|R(z, )P — 6

Note that for g € L,

Crgly) = (MyQlg] — Q[fg])(y) =/(f(y) — f(2))R(y, 2)g(z)dz.

Q
Thus,

C
I < < \ICrhally,

Next, we estimate I5. It follows from (4-1) and Hélder’s inequality that

L 2P-1CP4P / </ 1f(y) — f(2)|d )pd
< 1Y) — z z Yy
P (1= 0PV (Es (@) gy \ s
2r=1CP g / /
< fly) = () dzdy
(1 = 0)Pt DV (Es(2))? ) gy Ea<w>| W
22p—1cf(513

< WMog(f;I)-

We use Lemma 3.4 for the last inequality. Combining the above two estimates, we

obtain

(Y 22p—LCPsp
MOj(f;7) < (WHthzIIZ + GT)p(lanOg(f;fﬂ)-
Now we can choose § small so that
22r=1CP 4P

(1 _ 5)p(n+1)

IN

L
2
Then

MO3(f52) < 22Cyh. (1-2)
Since ||h;||, =1 for all z € {2, we have

L2
<2

sup MO (f; )

€

This shows that f € BMO? and completes the proof of (a).

1CF1I”.
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(b) Suppose H; is compact on both » and W'. By part (b) of Lemma 3.10, C
is compact on LP. Because of (4-2), it suffices to show that h, — 0 weakly in L? as
x — 052. For every g € ¥, by Holder’s inequality,

1 , 1/17'
hxgdv‘ < 7/ gldv < (/ gl? dV) 50
/n V(Es(@)Y? [ gy Bs (o)

as x — 0f2. This completes the proof of Lemma 4.3. ([l

Proof of Theorem 2.1. (a) If f € BMOP?, then f € BMO? since p > p/. Thus
by Lemmas 3.8, 4.1 and 4.2, Hy is bounded on both 0¥ and b This proves the
sufficiency of f € BMOP? for (a). The necessity of f € BMOP? for (a) has already
been proved in Lemma 4.3.

(b) If f € VMOP, then f € VMO? since p > p/. Thus by Lemmas 3.8, 4.1
and 4.2, Hy is compact on both ¥ and v’'. This proves the sufficiency of f € VMO?
for (b). The necessity of f € VMOP? for (b) has already been proved in Lemma 4.3.
The proof is complete. ]
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