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1. Introduction

For the real symplectic group Sp(2,R) of degree two, explicit formulas of the
Whittaker functions for various representations have been considerably developed
in these fifteen years ([26], [21], [22], [24], [12], [8]) as well as the generalized Whit-
taker functions (e.g. [20], [5], [6], [7]). These results are applied to obtain global
results such as the entireness of the spinor L-functions for generic cusp forms on
GSp(2) ([23], [13]). To present the first step toward the extension of these studies
to the higher degree cases, we discuss the Whittaker functions for PJ -principal series
representations of Sp(3,R) as a continuation to the previous paper ([10]).

The PJ -principal series representation we treat here is the induced representation
from the discrete series representation of the Levi part GL+(2,R) of the parabolic
subgroup PJ (see section 2.3 for the precise). We have the following two reasons
to investigate such representations. Firstly, it is easy to handle these representa-
tions because they have the convenient scalar K-types and thus the corresponding
Whittaker functions are scalar valued. Secondly, the invariants such as the Gelfand-
Kirillov dimension and the Bernstein degree ([35]) of these representations are the
same as those of the large discrete series representations of Sp(3,R), which are
sole cohomological representations having Whittaker models. In view of the role of
the discrete series representations in the cohomological theory of discrete subgroups
in Sp(n,R) ([25, sections 3,4]), we may expect that the automorphic L-functions
associated with automorphic forms generating discrete series representations have
“geometric meaning.” This is the reason why we stick to the discrete series. As
shown in [26], when the group is Sp(2,R), the Whittaker functions for PJ -principal
series are resemble to that for discrete series. Therefore we can heuristically expect
that the same analogy can be seen in the higher degree cases.

In the previous paper ([10]) we gave explicit formulas of the secondary Whit-
taker functions (i.e., the power series solutions around the regular singularity of
the holonomic system characterizing the Whittaker functions) by using the gener-
alized hypergeometric series 4F3(1). Here we obtain not only another expressions
for the secondary Whittaker functions but also the integral representations of Eu-
ler type and of Mellin-Barnes type for the primary Whittaker functions (i.e., the
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Whittaker functions having the moderate growth property). Our new observation
which is not given in [10] is that our Whittaker functions can be written in terms of
the Whittaker functions for the class one principal series representation of the split
orthogonal group SO(5,R) (Theorems 6.2, 7.3 and 8.2). This relation also holds
between Sp(2,R) and SO(3,R) and we might expect a kind of bootstrap procedure
from SO(2n − 1,R) to Sp(n,R). We also prove the linear relation between the
primary and the secondary Whittaker functions analogous to the results of Harish-
Chandra ([3]) for the spherical functions and of Hashizume ([4]) for the class one
Whittaker functions.

Although we believe our result itself is interesting as a new example of (confluent
type) special functions on Sp(3,R), we mention a possible application to number
theory. As is indicated in some previous works ([32], [33], [23], [13]), integral rep-
resentations of Mellin-Barnes type for the primary Whittaker functions are very
powerful tool to compute the gamma factors of automorphic L-functions. Then our
formula might be enable us to compute the archimedean parts of the zeta integrals
for the spinor L-functions for GSp(3) and for GSp(3)×GL(2) constructed by Bump
and Ginzburg ([1]) (see also Vo [34]) and to show the global functional equations.
On the other hand the secondary Whittaker functions play a fundamental role in
constructing the Poincaré series (cf. [19], [27]).

Here is the outline of this paper. In sections 2 and 3 we review the basic notions
such as PJ -principal series representations and Whittaker functions. Section 4 is
devoted to deduce the differential equations for Whittaker functions, which is not
precisely explained in [10]. After the review of the main result in [10] about the
explicit formula of the secondary Whittaker functions in section 5, we give another
expression for the secondary Whittaker functions by using the secondary Whittaker
functions for the class one principal series representations on SO(5,R). Analogous
results for the primary Whittaker functions and the relation to the secondary Whit-
taker functions are given in sections 7 and 8.

2. Preliminaries

2.1. Groups and algebras. We denote by Z, R, and C the ring of rational inte-
gers, the real number field and the complex number field, respectively, and by Z≥m

the set of integers n such that n ≥ m. Let Mn(R) be the space of real matrices of
size n and 1n (resp. On) be the unit (resp. the zero) matrix in Mn(R). Moreover
for 1 ≤ i ≤ 3, let ei be the unit vector of degree 3 with its i-th component 1 and
the remaining component 0.

The real symplectic group G = Sp(3,R) of degree three is defined by

G = Sp(3,R) =
{
g ∈ M6(R) | tgJ3 = J3g

−1, det g = 1
}

, J3 =

(
O3 13

−13 O3

)
,

which is connected, semisimple, and split over R. Here tg and g−1 mean the trans-
pose and the inverse of g, respectively. Let θ(g) = tg−1, g ∈ G, be a Cartan
involution of G. Then K = {g ∈ G | θ(g) = g} is a maximal compact subgroup of G
which is isomorphic to the unitary group U(3) of degree three.
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Let
g = sp(3,R) =

{
X ∈ M6(R) | J3X + tXJ3 = 0

}
,

be the Lie algebra of G. If we denote the differential of θ again by θ, then we have
θ(X) = −tX for X ∈ g. Let k and p be the +1 and the −1 eigenspaces of θ in g,
respectively, that is,

k =

{
X ∈

(
A B
−B A

) ∣∣∣∣ A,B ∈ M3(R), tA = −A, tB = B

}
,

p =

{
X ∈

(
A B
B −A

) ∣∣∣∣ A,B ∈ M3(R), tA = A, tB = B

}
.

Then k is the Lie algebra of K which is isomorphic to the unitary algebra

u(3) = {X ∈ M3(C) |X + tX̄ = 0},
of degree three, and g has a Cartan decomposition g = k⊕p. We fix an isomorphism
κ between u(3) and k given by

κ : u(3) 3 X 7→ 1

2

(
X + X̄

√−1(X̄ −X)√−1(X − X̄) X + X̄

)
∈ k.

For a Lie algebra l, we denote by lC = l ⊗R C the complexification of l. Take a
compact Cartan subalgebra h = ⊕3

i=1RTi of g, where Ti = κ(
√−1Eii) ∈ k with the

matrix unit Eij in M3(R) of (i, j) entry. For each 1 ≤ i ≤ 3, define a linear form βi

on hC by βi(Tj) =
√−1δij, 1 ≤ j ≤ 3. Here δij is the Kronecker’s delta. Then the

set ∆ of roots of (hC, gC) is given by

∆ = ∆(hC, gC) =
{±2βi (1 ≤ i ≤ 3), ±βj ± βk (1 ≤ j < k ≤ 3)

}
,

and the subset ∆+ =
{
2βi (1 ≤ i ≤ 3), βj ± βk (1 ≤ j < k ≤ 3)

}
forms a positive

root system. Let

∆+
c =

{
βj − βk (1 ≤ j < k ≤ 3)

}
,

∆+
n =

{
2βi (1 ≤ i ≤ 3), βj + βk (1 ≤ j < k ≤ 3)

}
,

be the set of compact and non-compact positive roots, respectively. If we denote
the root space for β ∈ ∆ by gβ, then kC ' gl(3,C) and pC have the decompositions

kC = hC ⊕
(⊕β∈∆+

c
g±β

)
, pC = p+ ⊕ p−, p± = ⊕β∈∆+

n
g±β.

Now we take a basis of kC and p± consisting of root vectors. If we denote the
extension of the isomorphism κ to their complexifications again by κ, then we have
κ(Eij) ∈ gβi−βj

for each 1 ≤ i, j ≤ 3 satisfying i 6= j and thus the set
{
κ(Eij) | 1 ≤

i, j ≤ 3
}

forms a basis of kC. On the other hand, if we define a map

p± :
{
X ∈ M3(C) |X = tX

} 3 X 7→
(

X ±√−1X
±√−1X −X

)
∈ p±,

then the element X±ij = p±

(
1

2
(Eij + Eji)

)
is a root vector in g±(βi+βj) for each

1 ≤ i ≤ j ≤ 3 and the set {X±ij | 1 ≤ i ≤ j ≤ 3} gives a basis of p±.
Put ap = ⊕3

i=1RHi with H1 = diag (1, 0, 0,−1, 0, 0), H2 = diag (0, 1, 0, 0,−1, 0),
and H3 = diag (0, 0, 1, 0, 0,−1). Then ap is a maximal abelian subalgebra of p. For
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each 1 ≤ i ≤ 3, we define ei ∈ a∗p by ei(Hj) = δij for 1 ≤ j ≤ 3. The set Σ of the
restricted roots of (ap, g) is given by

Σ = Σ(ap, g) =
{±2ei (1 ≤ i ≤ 3), ±ej ± ek (1 ≤ j < k ≤ 3)

}
,

and the subset Σ+ =
{
2ei (1 ≤ i ≤ 3), ej ± ek (1 ≤ j < k ≤ 3)

}
forms a positive

root system. For each α ∈ Σ, we denote the restricted root space by gα and choose
a restricted root vector Eα in gα as follows.

E2ei
=

(
O3 Eii

O3 O3

)
, 1 ≤ i ≤ 3,

Eei+ej
=

(
O3 Eij + Eji

O3 O3

)
, Eei−ej

=

(
Eij O3

O3 −Eji

)
, 1 ≤ i < j ≤ 3,

and E−α = θEα for α ∈ Σ+. If we put np = ⊕α∈Σ+gα, then g has an Iwasawa
decomposition g = np ⊕ ap ⊕ k. Also we have G = NAK, where A (resp. N) is the
analytic subgroup with Lie algebra ap (resp. np).

Set

aJ = ⊕2
i=1RHi, nJ = ⊕α∈Σ+\{2e3}gα, mJ = RH3 ⊕ g2e3 ⊕ g−2e3 ' sl(2,R).

Moreover let AJ , NJ , and MJ,0 ' SL(2,R) be the analytic subgroups with Lie
algebras aJ , nJ , and mJ , respectively. Then PJ = MJAJNJ with MJ = ZK(aJ)MJ,0

is a parabolic subgroup of G corresponding to the root 2e3 and the right-hand
side gives its Langlands decomposition. Here ZK(aJ) = {16, µ1} × {16, µ2} with
µi = exp πTi is the centralizer of aJ in K. We call PJ the second Jacobi parabolic
subgroup of G.

2.2. Representation of K. The equivalence classes of irreducible representations
of K ' U(3) can be parameterized by the set Λ =

{
λ = (λ1, λ2, λ3) |λi ∈ Z, λ1 ≥

λ2 ≥ λ3

}
from the highest weight theory. We denote the representation of K

associated to λ ∈ Λ by (τλ, Vλ).
The representation space Vλ of a representation τλ has the Gelfand-Zelevinsky (or

the canonical) basis {f(M)}M∈G(λ) parameterized by the set G(λ) of all G-patterns
of type λ. Here a G-pattern M ∈ G(λ) of type λ = (λ1, λ2, λ3) ∈ Λ is a triangular
array

M =

(
λ1 λ2 λ3

α1 α2

β

)

of integers satisfying the conditions λ1 ≥ α1 ≥ λ2 ≥ α2 ≥ λ3 and α1 ≥ β ≥ α2.
For the definition of the Gelfand-Zelevinsky basis and the explicit action of kC =
Lie (K)C = u(3)C on this basis, we refer to the papers [2] and [9]. In particular,
when λ = (m, m,m) ∈ Λ, the associated representation (τλ, Vλ) is one dimensional
and the action of kC = gl(3,C) on v ∈ Vλ is given by

τλ

(
κ(Eij)

)
v = δijmv, 1 ≤ i, j ≤ 3.

It is known that both of p± become K-modules via the adjoint action of K.
Concerning this, we have the following lemma.



WHITTAKER FUNCTIONS 5

Lemma 2.1. We have isomorphisms p+ ' V2e1 and p− ' V−2e3 by the correspon-
dences between their basis(

X+11, X+22, X+33, X+12, X+13, X+23

)

↔
(

f

(
2e1

2 0
2

)
, f

(
2e1

2 0
0

)
, f

(
2e1

0 0
0

)
, f

(
2e1

2 0
1

)
, f

(
2e1

1 0
1

)
, f

(
2e1

1 0
0

))
,

(
X−11, X−22, X−33,−X−12, X−13,−X−23

)

↔
(

f

( −2e3

0 − 2
−2

)
, f

( −2e3

0 − 2
0

)
, f

( −2e3

0 0
0

)
, f

( −2e3

0 − 2
−1

)
, f

( −2e3

0 − 1
−1

)
, f

( −2e3

0 − 1
0

))
.

Proof. Let λ+ = 2e1 and λ− = −2e3 be two elements in Λ. Then we can find the ac-
tion τλ± of the generators of gl(3,C) on the Gelfand-Zelevinsky basis {f(M)}M∈G(λ±)

of Vλ± in [2], Theorem 4 (cf. [9], Proposition 1.4). On the other hand, we have the
following tables of the adjoint actions of kC on the basis {X±ij} of p±, which are ob-
tained by direct computation. Comparing these two actions, we have the assertion.
2

κ(E11) κ(E22) κ(E33) κ(E12) κ(E21) κ(E23) κ(E32) κ(E13) κ(E31)
X+11 2X+11 0 0 0 2X+12 0 0 0 2X+13

X+12 X+12 X+12 0 X+11 X+22 0 X+13 0 X+23

X+22 0 2X+22 0 2X+12 0 0 2X+23 0 0
X+13 X+13 0 X+13 0 X+23 X+12 0 X+11 X+33

X+23 0 X+23 X+23 X+13 0 X+22 X+33 X+12 0
X+33 0 0 2X+33 0 0 2X+23 0 2X+13 0

TABLE 1. The adjoint actions of κ(Eij) on {X+ij}.

κ(E11) κ(E22) κ(E33) κ(E12) κ(E21) κ(E23) κ(E32) κ(E13) κ(E31)
−X−11 2X−11 0 0 2X−12 0 0 0 2X−13 0
−X−12 X−12 X−12 0 X−22 X−11 X−13 0 X−23 0
−X−22 0 2X−22 0 0 2X−12 2X−23 0 0 0
−X−13 X−13 0 X−13 X−23 0 0 X−12 X−33 X−11

−X−23 0 X−23 X−23 0 X−13 X−33 X−22 0 X−12

−X−33 0 0 2X−33 0 0 0 2X−23 0 2X−13

TABLE 2. The adjoint actions of κ(Eij) on {−X−ij}.
2.3. PJ-principal series representation of G. Let σ = (ε1, ε2, D) be a repre-
sentation of MJ = {16, µ1} × {16, µ2} × MJ,0 with characters εi : {16, µi} → C×,
i = 1, 2, and a (limit of) discrete series representation D = D±

k of MJ,0 ' SL(2,R)
with the Blattner parameter ±k (k ∈ Z≥1). Moreover take a quasi-character ν of
AJ such that

ν
(
diag (a1, a2, 1, a

−1
1 , a−1

2 , 1)
)

= aν1
1 aν2

2 , (ν1, ν2) ∈ C2.

Then we can construct an induced representation IndG
PJ

(σ ⊗ ν ⊗ 1NJ
) of G from

the second Jacobi parabolic subgroup PJ in the usual manner, which we call a PJ-
principal series representation of G. The multiplicity theorem for the K-types can
be computed by the Frobenius reciprocity for induced representations.
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Proposition 2.2. Let π = IndG
PJ

(σ⊗ν⊗1NJ
) be a PJ-principal series representation

of G with data σ = (ε1, ε2, D) and ν. Then each irreducible K-module (τλ, Vλ)
associated with λ ∈ Λ occurs in the restriction π|K of π to K with the following
multiplicity mλ.

mλ = #

{
M ∈ G(λ)

∣∣∣∣
εi(µi) = (−1)wi , i = 1, 2

k ≡ w3 (mod 2), k ≤ sgn (D)w3

}
.

Here w = (w1, w2, w3) is the weight for M =

(
λ1, λ2, λ3

α1, α2

β

)
∈ G(λ) defined by the

formula
w1 = β, w2 = α1 + α2 − β, w3 = λ1 + λ2 + λ3 − α1 − α2,

and sgn (D) = 1 (resp. −1) for D = D+
k (resp. D−

k ).

Proof. First, we observe that

K ∩MJ = {16, µ1} × {16, µ2} × {exp θT3 | 0 ≤ θ < 2π} ' {±1}2 × SO(2).

Therefore, if we define a character δi of {16, µi} by δi(µi) = −1 and a character χm

of {exp θT3 | 0 ≤ θ < 2π} by χm(exp θT3) = e
√−1mθ, then

̂(K ∩MJ) =
{
(δn1

1 , δn2
2 , χm)

∣∣ ni ∈ {0, 1},m ∈ Z
}
.

The Frobenius reciprocity for induced representations (cf. Knapp[14]) tells us
that for each λ ∈ Λ the multiplicity mλ is given by

mλ =
∑

w∈ \(K∩MJ )

[
σ|K∩MJ

: w
][

τλ|K∩MJ
: w

]
.

Since the action of K ∩MJ on the Gelfand-Zelevinsky basis {f(M)}M∈G(λ) of Vλ is
given by

τλ(µi)f(M) = (−1)wif(M), i = 1, 2,

τλ(exp θT3)f(M) = e
√−1θw3f(M),

we have
τλ|K∩MJ

=
⊕

M∈G(λ)

(
δw1
1 , δw2

2 , χw3

)
.

On the other hand, it follows from the decomposition of D into its K-type that the
restriction of σ to K ∩MJ has the decomposition

σ|K∩MJ
=

⊕
m∈Z≥0

(
ε1, ε2, χsgn (D)(k+2m)

)
.

Hence we have

mλ =
∑

m∈Z≥0

#

{
M ∈ G(λ)

∣∣∣∣
εi = δwi

i , i = 1, 2
sgn (D)(k + 2m) = w3

}
,

and thus, the assertion of Proposition follows. 2

Let π = IndG
PJ

(σ ⊗ ν ⊗ 1NJ
) be a PJ -principal series representation with σ =

(ε1, ε2,D+
k ) such that εi(µi) = (−1)k. According to the above proposition, in the

restriction π|K to K of π, the multiplicity m(k,k,k) of the K-module τ(k,k,k) is one
whereas m(k−2,k−2,k−2) = 0. The K-type τ(k,k,k) of π is called corner.
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2.4. Unitary characters of N . Let η be a unitary character of N and denote the
derivative of η by the same letter. Since

nab
p = np/[np, np] ' ge1−e2 ⊕ ge2−e3 ⊕ g2e3 ,

η is specified by three real numbers c12, c23, and c3 such that

η(Ee1−e2) = 2π
√−1c12, η(Ee2−e3) = 2π

√−1c23, and η(E2e3) = 2π
√−1c3.

When c12c23c3 6= 0, a unitary character η of N is called non-degenerate.

3. Whittaker functions

For a finite dimensional representation (τ, Vτ ) of K and a non-degenerate unitary
character η of N , we consider the space C∞

η,τ (N\G/K) of smooth functions ϕ : G →
Vτ with the property

ϕ(ngk) = η(n)τ(k)−1ϕ(g), (n, g, k) ∈ N ×G×K.

Here we remark that any function f ∈ C∞
η,τ (N\G/K) is determined by its restriction

f |A to A from the Iwasawa decomposition G = NAK of G. Also let (τ ∗, Vτ∗)
be the contragredient representation of (τ, Vτ ) and C∞IndG

N(η) be the C∞-induced
representation from η with the representation space

C∞
η (N\G) =

{
ϕ ∈ C∞(G)

∣∣ ϕ(ng) = η(n)ϕ(g), (n, g) ∈ N ×G
}
,

on which G acts by right translation. Then the space C∞
η,τ (N\G/K) is isomorphic to

Hom K(τ ∗, C∞IndG
N(η)) via the correspondence between ι ∈ Hom K(τ ∗, C∞IndG

N(η))
and F [ι] ∈ C∞

η,τ (N\G/K) given by the relation ι(v∗)(g) = 〈v∗, F [ι](g)〉 for v∗ ∈ Vτ∗

and g ∈ G with the canonical bilinear form 〈·, ·〉 on Vτ∗ × Vτ .
Let (π,Hπ) be an irreducible admissible representation of G, and take a multiplic-

ity one K-type (τ ∗, Vτ∗) of π with an injection i : τ ∗ → π. Then, for each element T
in the intertwining space Iη,π = Hom (gC,K)(π, C∞IndG

N(η)) between (gC, K)-modules
consisting of all K-finite vectors, the relation T (i(v∗))(g) = 〈v∗, Ti(g)〉 for v∗ ∈ Vτ∗

and g ∈ G determines an element Ti ∈ C∞
η,τ (N\G/K). Now we put

Wh(π, η, τ) =
⋃

i∈Hom K(τ∗,π)

{
Ti ∈ C∞

η,τ (N\G/K)
∣∣ T ∈ Iη,π

}
,

and call Wh(π, η, τ) the space of Whittaker functions for (π, η, τ). Moreover, we
denote by I◦η,π the subspace of Iη,π consisting of the intertwining operators whose
images in C∞

η (N\G) are moderate growth functions ([36] §8.1) and define

Wh(π, η, τ)mod =
⋃

i∈Hom K(τ∗,π)

{
Ti ∈ C∞

η,τ (N\G/K)
∣∣ T ∈ I◦η,π

}
.

An element in Wh(π, η, τ)mod is called a Whittaker function of moderate growth.
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4. Differential Equations

Let σ = (ε1, ε2,D+
k ) be a representation of MJ such that εi(µi) = (−1)k and ν a

quasi-character of AJ defined by

ν
(
diag (a1, a2, 1, a

−1
1 , a−1

2 , 1)
)

= aν1
1 aν2

2 , (ν1, ν2) ∈ C2.

In the rest of this paper, we consider the Whittaker functions for the irreducible
PJ -principal series representation π = IndG

PJ
(σ⊗ ν⊗ 1NJ

), a non-degenerate unitary
character η of N specified by three real numbers c12, c23 and c3, and the K-module
τ = τ(−k,−k,−k) whose contragredient representation gives the corner K-type of π.

First of all, we define the ±-chirality matrices as follows.

Definition 4.1. The ±-chirality matrices mi(C±) for 1 ≤ i ≤ 3 are defined by

m1(C±) =




X±11 X±12 X±13

X±12 X±22 X±23

X±13 X±23 X±33


 , m2(C±) =




M±11 −M±12 M±13

−M±12 M±22 −M±23

M±13 −M±23 M±33


 ,

and m3(C±) = det
(
m1(C±)

)
. Here M±ij is the (i, j)-minor of the matrix m1(C±)

for each 1 ≤ i ≤ j ≤ 3, that is,

M±11 =

∣∣∣∣
X±22 X±23

X±23 X±33

∣∣∣∣ ,M±22 =

∣∣∣∣
X±11 X±13

X±13 X±33

∣∣∣∣ ,M±33 =

∣∣∣∣
X±11 X±12

X±12 X±22

∣∣∣∣ ,

M±12 =

∣∣∣∣
X±12 X±23

X±13 X±33

∣∣∣∣ ,M±13 =

∣∣∣∣
X±12 X±22

X±13 X±23

∣∣∣∣ ,M±23 =

∣∣∣∣
X±11 X±12

X±13 X±23

∣∣∣∣ .

Then we can find the following lemma immediately from the definition of the
chirality matrices.

Lemma 4.2. For each 1 ≤ i ≤ 3, the element C2i = Tr
(
mi(C+)mi(C−)

)
in U(gC)

is invariant under the adjoint action of K, that is,

C2i ∈ U(gC)
K = {X ∈ U(gC) |Ad (k)X = X, k ∈ K}.

Remark 4.3. In the case of Sp(n,R), we can define C2i for each 1 ≤ i ≤ n belong-
ing to U(gC)

K similarly. The operator C2n is essentially the same as the so-called
Maass shift operator in the classical literature [17]. Also, the chirality matrices are
used to construct the Capelli elements for a symmetric pair in [16], recently.

Now we consider a system of differential equations which are satisfied by the A-
radial part of each element in Wh(π, η, τ). The elements C2, C4, and C6 in U(gC)

K

defined in Lemma 4.2 are acting on the space C∞
η (N\G) as differential operators.

In particular, since K-type τ ∗ occurs with multiplicity one in π|K , it follows that
these operators are acting on the space Wh(π, η, τ) as scalar operators. Here we
examine the scalar action of the operator C6 = m3(C+)m3(C−) in more detail. By
definition, the operator m3(C−) maps the K-type τ ∗ = τ(k,k,k) into τ(k−2,k−2,k−2) in
the Harish-Chandra module of π. Therefore each element in Wh(π, η, τ) vanishes
by the action of m3(C−), because the K-module τ(k−2,k−2,k−2) does not occur in π|K .
Therefore each element in Wh(π, η, τ) satisfies the following system of differential
equations

C2φ = χ2,k,νφ, C4φ = χ4,k,νφ, m3(C−)φ = 0,
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if we denote the scalar value for the action of the operator C2i by χ2i,k,ν .
To obtain the explicit actions of the operators C2, C4, and m3(C−) and their

eigenvalues χ2i,k,ν , we may express these operators in the normal order modulo
[np, np] with respect to the Iwasawa decomposition of g, according to the following
lemma.

Lemma 4.4. Let f ∈ C∞
η,τ (N\G/K). For X ∈ U(kC), Y ∈ U(npC), Z ∈ U(aC)

and a ∈ A, we have
(
Ad (a−1)Y

)
ZXf(a) = η(Y )τ(−X)(Zf)(a). In particular, for

a = diag (a1, a2, a3, a
−1
1 , a−1

2 , a−1
3 ) ∈ A, we have Hif(a) = ai

∂

∂ai

f(a) and

Ee1−e2f(a) = 2π
√−1c12

a1

a2

f(a), Ee2−e3f(a) = 2π
√−1c23

a2

a3

f(a),

E2e3f(a) = 2π
√−1c3a

2
3f(a),

and Eαf(a) = 0 for ∀α ∈ Σ+\{e1 − e2, e2 − e3, 2e3}.
The proof is omitted (cf. Knapp[14], Chapter VIII).
Moreover, we have the following fundamental lemma which is required to get the

expressions of the elements in U(gC) in normal order. In the following, we denote
X ≡ Y for two elements X and Y in U(gC) when X − Y ∈ [np, np]U(gC).

Lemma 4.5. The root vectors X±ij in p± have the following expressions according
to the Iwasawa decomposition of g.

X+ij =

{
2
√−1E2ei

+ Hi + κ(Eii), i = j,(
Eei−ej

+
√−1Eei+ej

)
+ κ(Eji), i < j,

X−ij =

{ −2
√−1E2ei

+ Hi − κ(Eii), i = j,(
Eei−ej

−√−1Eei+ej

)− κ(Eij), i < j.

Therefore, we have

X+ij ≡
{

Hi + κ(Eii), i = j = 1, 2,
Eei−ej

+ κ(Eji), (i, j) = (1, 2), (2, 3),

X−ij ≡
{

Hi − κ(Eii), i = j = 1, 2,
Eei−ej

− κ(Eij), (i, j) = (1, 2), (2, 3),

and

X±33 ≡ ±2
√−1E2e3 + H3 ± κ(E33), X+13 ≡ κ(E31), X−13 ≡ −κ(E13).

Proof. These are obtained by direct computation. 2

Let us compute the normal order of the operators C2, C4, and m3(C−). First we
treat the operator

C2 = Tr
(
m1(C+)m1(C−)

)
=

3∑
i=1

X+iiX−ii + 2
∑

1≤i<j≤3

X+ijX−ij,

of degree two. By using the expressions of X+ij in Lemma 4.5 and Table 2 for the
action of kC on X−ij in the proof of Lemma 2.1, each term in the right hand side of
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the above expression of C2 can be computed as

X+iiX−ii ≡
{

HiX−ii + X−ii

(
κ(Eii)− 2

)
, i = 1, 2,(

2
√−1E2e3 + H3

)
X−33 + X−33

(
κ(E33)− 2

)
, i = 3,

and

X+ijX−ij ≡
{

Eei−ej
X−ij + X−ijκ(Eji)−X−ii, (i, j) = (1, 2), (2, 3),

X−13κ(E31)−X−11, (i, j) = (1, 3).

Thus we have

C2 ≡ (H1 − 6)X−11 + X−11κ(E11) + (H2 − 4)X−22 + X−22κ(E22)

+
(
H3 + 2

√−1E2e3 − 2
)
X−33 + X−33κ(E33) + 2Ee1−e2X−12

+2X−12κ(E21) + 2Ee2−e3X−23 + 2X−23κ(E32) + 2X−13κ(E31).

Next we consider the operator C4 of degree four. By definition, C4 can be ex-
pressed as

C4 =
3∑

i=1

M+iiM−ii + 2
∑

1≤i<j≤3

M+ijM−ij.

We compute the right hand side of this expression by using the following lemmas.

Lemma 4.6. 1. Each (i, j)-minor M+ij in the matrix m2(C+) has the following
expression.

M+11 ≡ (H2 − 1)X+33 + X+33κ(E22)− Ee2−e3X+23 −X+23κ(E32),

M+22 ≡ (H1 − 1)X+33 + X+33κ(E11)−X+13κ(E31),

M+33 ≡ (H1 − 1)X+22 + X+22κ(E11)− Ee1−e2X+12 −X+12κ(E21),

M+12 ≡ Ee1−e2X+33 + X+33κ(E21)−X+23κ(E31),

M+23 ≡ (H1 − 1)X+23 + X+23κ(E11)−X+12κ(E31),

M+13 ≡ Ee1−e2X+23 + X+23κ(E21)−X+22κ(E31).

2. Each (i, j)-minor M−ij in the matrix m2(C−) has the following expression.

M−11 ≡ (H2 − 1)X−33 −X−33κ(E22)− Ee2−e3X−23 + X−23κ(E23),

M−22 ≡ (H1 − 1)X−33 −X−33κ(E11) + X−13κ(E13),

M−33 ≡ (H1 − 1)X−22 −X−22κ(E11)− Ee1−e2X−12 + X−12κ(E12),

M−12 ≡ Ee1−e2X−33 −X−33κ(E12) + X−23κ(E13),

M−23 ≡ (H1 − 1)X−23 −X−23κ(E11) + X−12κ(E13),

M−13 ≡ Ee1−e2X−23 −X−23κ(E12) + X−22κ(E13).

Proof. By using the expressions in Lemma 4.5, the minor M+11 = X+22X+33 −
X+23X+23 can be expressed as

M+11 ≡
(
H2 + κ(E22)

)
X+33 −

(
Ee2−e3 + κ(E32)

)
X+23.

From this and the relations

κ(E22)X+33 = X+33κ(E22), κ(E32)X+23 = X+23κ(E32) + X+33,
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which can be seen from Table 1 for the action of kC on p+ in the proof of Lemma
2.1, we have the expression of M+11 in the assertion of lemma. The expressions for
the other minors can be obtained similarly. 2

Lemma 4.7. We have the following commutation relations.

1. For each 1 ≤ i, j ≤ 3, κ(Eii)M−jj = M−jj

{
κ(Eii)− 2(1− δij)

}
.

2. For each permutation {i, j, k} of {1, 2, 3}, κ(Eij)M−kk = M−kkκ(Eij).
3. κ(E31)M−12 = M−12κ(E31) + M−23, κ(E32)M−12 = M−12κ(E32)−M−13,

κ(E21)M−12 = M−12κ(E21)−M−22, κ(E12)M−12 = M−12κ(E12)−M−11,
κ(E33)M−12 = M−12

(
κ(E33)− 2

)
.

4. κ(E21)M−13 = M−13κ(E21)−M−23, κ(E31)M−13 = M−13κ(E31) + M−33,
κ(E32)M−13 = M−13κ(E32), κ(E13)M−13 = M−13κ(E13) + M−11,
κ(E22)M−13 = M−13

(
κ(E22)− 2

)
.

5. κ(E21)M−23 = M−23κ(E21), κ(E31)M−23 = M−23κ(E31),
κ(E32)M−23 = M−23κ(E32)−M−33, κ(E11)M−23 = M−23

(
κ(E11)− 2

)
.

Proof. This lemma follows from the definition of the minors M−ij and Table 2 for
the action of kC on p− in the proof of Lemma 2.1 by direct computation. 2

Now we proceed our computation for C4. From Lemma 4.6 and Lemma 4.7, we
have

M+11M−11 ≡ (H2 − 1)X+33M−11 + X+33M−11

(
κ(E22)− 2

)

−Ee2−e3X+23M−11 −X+23M−11κ(E32).

Also, by using the relations

X+33M−11 ≡ (
2
√−1E2e3 + H3

)
M−11 + M−11

(
κ(E33)− 2

)
,

X+23M−11 ≡ Ee2−e3M−11 + M−11κ(E32).

which can be seen from Lemma 4.5 and Lemma 4.7, we can compute M+11M−11

further as

M+11M−11 ≡ (H2 − 1)
{(

2
√−1E2e3 + H3

)
M−11 + M−11

(
κ(E33)− 2

)}

+
{(

2
√−1E2e3 + H3

)
M−11 + M−11

(
κ(E33)− 2

)}(
κ(E22)− 2

)

−E2
e2−e3

M−11 − 2Ee2−e3M−11κ(E32)−M−11κ(E32)
2.

Similar calculation shows the following expressions for the other required products
of two minors.

M+22M−22 ≡ (H1 − 1)
{(

2
√−1E2e3 + H3

)
M−22 + M−22

(
κ(E33)− 2

)}

+
{(

2
√−1E2e3 + H3

)
M−22 + M−22

(
κ(E33)− 2

)}(
κ(E11)− 2

)

−M−22κ(E31)
2,

M+33M−33 ≡ (H1 − 1)
{

H2M−33 + M−33

(
κ(E22)− 2

)}

+
{

H2M−33 + M−33

(
κ(E22)− 2

)}(
κ(E11)− 2

)

−E2
e1−e2

M−33 − 2Ee1−e2M−33κ(E21)−M−33κ(E21)
2,
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M+12M−12 ≡ Ee1−e2

{(
2
√−1E2e3 + H3

)
M−12 + M−12

(
κ(E33)− 2

)}

−(
2
√−1E2e3 + H3

)
M−22 −M−22

(
κ(E33)− 2

)− Ee2−e3M−23

+M−33 + X+33M−12κ(E21)−X+23M−12κ(E31)−M−23κ(E32),

M+23M−23 ≡ (H1 − 1)
(
Ee2−e3M−23 + M−23κ(E32)−M−33

)

+
(
Ee2−e3M−23 + M−23κ(E32)−M−33

)(
κ(E11)− 2

)

−X+12M−23κ(E31),

M+13M−13 ≡ Ee1−e2

(
Ee2−e3M−13 + M−13κ(E32)

)− Ee2−e3M−23

+M−33 −H2M−33 −M−33

(
κ(E22)− 2

)

+X+23M−13κ(E21)−M−23κ(E32)−X+22M−13κ(E31).

By adding up them, we can obtain a tractable expression of the operator C4.
Finally we discuss the operator

m3(C−) = det C− = X−11M−11 −X−12M−12 + X−13M−13.

Its expression in the normal order can be computed by combining the expressions in
Lemma 4.5 and the commutation relations in Lemma 4.7. The resulted expression
is given as follows.

m3(C−) ≡ (H1 − 2)M−11 −M−11κ(E11)− Ee1−e2M−12

+M−12κ(E12)−M−13κ(E13).

From the above computation and the action of kC on the representation space
Vτ of τ = τ(−k,−k,−k) given in §2.2, we can summarize the explicit actions of the
operators C2, C4, and m3(C−) on the space C∞

η,τ (N\G/K).

Proposition 4.8. The operators C2, C4 and m3(C−) acting on C∞
η,τ (N\G/K) are

given as follows.

C2 ≡ (H1 − 6 + k)(H1 − k) + (H2 − 4 + k)(H2 − k)

+
(
H3 + 2

√−1E2e3 − 2 + k
)(

H3 − 2
√−1E2e3 − k

)

+2E2
e1−e2

+ 2E2
e2−e3

,

C4 ≡
{

(H2 + k − 3)
(
2
√−1E2e3 + H3 + k − 2

)− E2
e2−e3

}
M−11

+(H1 + k − 5)
(
2
√−1E2e3 + H3 + k − 2

)
M−22

+
{
(H1 + k − 5)(H2 + k − 4)− E2

e1−e2

}
M−33

+2Ee1−e2

(
2
√−1E2e3 + H3 + k − 2

)
M−12 + 2Ee1−e2Ee2−e3M−13

+2(H1 + k − 5)Ee2−e3M−23,

m3(C−) ≡ (H1 − k − 2)M−11 − Ee1−e2M−12,

and

M−11 ≡ (
H3 − 2

√−1E2e3 − k
)
(H2 − k − 1)− E2

e2−e3
,
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M−22 ≡ (
H3 − 2

√−1E2e3 − k
)
(H1 − k − 1),

M−33 ≡ (H1 − k − 1)(H2 − k)− E2
e1−e2

,

M−12 ≡ Ee1−e2

(
H3 − 2

√−1E2e3 − k
)
,

M−23 ≡ Ee2−e3(H1 − k − 1),

M−13 ≡ Ee1−e2Ee2−e3 .

On the other hand, the eigenvalues χ2,k,ν and χ4,k,ν for the actions of C2 and C4

can be evaluated in the usual manner. The result is given as follows.

Lemma 4.9. The scalar values χ2,k,ν and χ4,k,ν for the action of C2 and C4 on
Wh(π, η, τ) are given by

χ2,k,ν =
{
ν2

1 − (k− 3)2
}

+
{
ν2

2 − (k− 2)2
}
, χ4,k,ν =

{
ν2

1 − (k− 2)2}{ν2
2 − (k− 2)2

}
.

To state an explicit form of a holonomic system of partial differential equations
satisfied by the A-radial part of each element in Wh(π, η, τ), we introduce the coor-
dinate x = (x1, x2, x3) on A defined by

x1 =

(
πc12

a1

a2

)2

, x2 =

(
πc23

a2

a3

)2

, x3 = 4πc3a
2
3,

for diag (a1, a2, a3, a
−1
1 , a−1

2 , a−1
3 ) ∈ A. Then we have the following theorem.

Theorem 4.10. Each element ϕ in the space Wh(π, η, τ)|A of the restriction of
Whittaker functions to A satisfies the following holonomic system of partial differ-
ential equations of rank 24. 



D2ϕ(x) = 0,
D3ϕ(x) = 0,
D4ϕ(x) = 0.

(1)

Here

D2 = (2∂1 + k − 6) (2∂1 − k) + (−2∂1 + 2∂2 + k − 4) (−2∂1 + 2∂2 − k)

+ (−2∂2 + 2∂3 − x3 + k − 2) (−2∂2 + 2∂3 + x3 − k)− 8x1 − 8x2 − χ2,k,ν ,

D3 = (2∂1 − k − 2)
{
(−2∂1 + 2∂2 − k − 1) (−2∂2 + 2∂3 + x3 − k) + 4x2

}

+4x1 (−2∂2 + 2∂3 + x3 − k) ,

D4 =
{
(−2∂1 + 2∂2 + k − 3) (−2∂2 + 2∂3 − x3 + k − 2) + 4x2

}

·{(−2∂1 + 2∂2 − k − 1) (−2∂2 + 2∂3 + x3 − k) + 4x2

}

+ (2∂1 + k − 5) (−2∂2 + 2∂3 − x3 + k − 2)

· (2∂1 − k − 1) (−2∂2 + 2∂3 + x3 − k)

+
{
(2∂1 + k − 5) (−2∂1 + 2∂2 + k − 4) + 4x1

}

·{(2∂1 − k − 1) (−2∂1 + 2∂2 − k) + 4x1

}

−8x1 (−2∂2 + 2∂3 − x3 + k − 2) (−2∂2 + 2∂3 + x3 − k)

+32x1x2 − 8x2 (2∂1 + k − 5) (2∂1 − k − 1)− χ4,k,ν ,
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with χ2,k,ν and χ4,k,ν given in Lemma 4.9. Moreover, ∂i = xi
∂

∂xi

is the Euler operator

with respect to the variable xi.

For later computation, the following form of the above holonomic system (1) is
useful.

Corollary 4.11. For a function ϕ ∈ C∞(A), put

ϕ(x) = x
3
2
1 x

5
2
2 x3

3 exp
(
−x3

2

)
ϕ̃(x).

Then the holonomic system (1) for ϕ is equivalent to the following holonomic system
for ϕ̃.




D̃2ϕ̃(x) = 0,

D̃3ϕ̃(x) = 0,

D̃4ϕ̃(x) = 0.

(2)

Here

D̃2 = (2∂1 + k − 3) (2∂1 − k + 3) + (−2∂1 + 2∂2 + k − 2) (−2∂1 + 2∂2 − k + 2)

+ (−2∂2 + 2∂3 − 2x3 + k − 1) (−2∂2 + 2∂3 − k + 1)− 8x1 − 8x2 − χ2,k,ν ,

D̃3 = (2∂1 − k + 1)
{
(−2∂1 + 2∂2 − k + 1) (−2∂2 + 2∂3 − k + 1) + 4x2

}

+4x1 (−2∂2 + 2∂3 − k + 1) ,

D̃4 =
{
(−2∂1 + 2∂2 + k − 1) (−2∂2 + 2∂3 − 2x3 + k − 1) + 4x2

}

·{(−2∂1 + 2∂2 − k + 1) (−2∂2 + 2∂3 − k + 1) + 4x2

}

+ (2∂1 + k − 2) (−2∂2 + 2∂3 − 2x3 + k − 1)

· (2∂1 − k + 2) (−2∂2 + 2∂3 − k + 1)

+
{
(2∂1 + k − 2) (−2∂1 + 2∂2 + k − 2) + 4x1

}

·{(2∂1 − k + 2) (−2∂1 + 2∂2 − k + 2) + 4x1

}

−8x1 (−2∂2 + 2∂3 − 2x3 + k − 1) (−2∂2 + 2∂3 − k + 1)

+32x1x2 − 8x2 (2∂1 + k − 2) (2∂1 − k + 2)− χ4,k,ν .

From the results of Kostant ([15] Theorem 6.8.1) and Matumoto ([18] Corollary
2.2.2, Theorem 6.2.1), it follows that the dimension of the intertwining space Iη,π,
and thus, of the space Wh(π, η, τ) of the Whittaker functions is 24. Therefore every
solution of the holonomic system in Theorem 4.10 gives an element in Wh(π, η, τ)|A.

5. Secondary Whittaker functions; the first formula

The holonomic system (1) has regular singularities along 3 divisors x1 = 0, x2 =
0, and x3 = 0 with normal crossing at x = (0, 0, 0), in the sense of [28]. The
power series solutions of the system (1) around the point x = (0, 0, 0) are called
the secondary Whittaker functions. To give an explicit formula for the secondary
Whittaker functions, we treat the holonomic system (2) instead of (1).
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Let us consider a formal power series solution

xγ1

1 xγ2

2 xγ3

3

∑
n1,n2,n3≥0

cγ
n1,n2,n3

xn1
1 xn2

2 xn3
3 , γ = (γ1, γ2, γ3) ∈ C3,(3)

of the holonomic system (2) around x = (0, 0, 0) associated with a characteristic
index γ. Then we can translate the holonomic system (2) into a system of difference
equations for the coefficients cγ

n1,n2,n3
of the power series (3). In the following, we put

δ = (δ1, δ2, δ3) = (γ1,−γ1 +γ2,−γ2 +γ3) for the characteristic index γ = (γ1, γ2, γ3),
and often use the symbol δ instead of γ, such as cδ

n1,n2,n3
.

Lemma 5.1. The power series (3) satisfies the holonomic system (2) if and only if
the coefficients {cδ

n1,n2,n3
} satisfy the following system of difference equations:

[
4(δ1 + n1)

2 + 4(δ2 − n1 + n2)
2 + 4(δ3 − n2 + n3)

2 − {
ν2

1 + ν2
2 + (k − 1)2

}]
cδ
n1,n2,n3

−8cδ
n1−1,n2,n3

− 8cδ
n1,n2−1,n3

− 2 (2δ3 − 2n2 + 2n3 − k − 1) cδ
n1,n2,n3−1 = 0,

(2δ1 + 2n1 − k + 1) (2δ2 − 2n1 + 2n2 − k + 1) (2δ3 − 2n2 + 2n3 − k + 1) cδ
n1,n2,n3

+4 (2δ3 − 2n2 + 2n3 − k + 1) cδ
n1−1,n2,n3

+ 4 (2δ1 + 2n1 − k + 1) cδ
n1,n2−1,n3

= 0,

[{
4 (δ2 − n1 + n2)

2 − (k − 1)2}{
4 (δ3 − n2 + n3)

2 − (k − 1)2}

+
{
4 (δ1 + n1)

2 − (k − 2)2}{
4 (δ3 − n2 + n3)

2 − (k − 1)2}

+
{
4 (δ1 + n1)

2 − (k − 2)2}{
4 (δ2 − n1 + n2)

2 − (k − 2)2}

−{
ν2

1 − (k − 2)2}{
ν2

2 − (k − 2)2}]
cδ
n1,n2,n3

+
[
4 (2δ1 + 2n1 − k) (2δ2 − 2n1 + 2n2 − k + 4)

+4 (2δ1 + 2n1 + k − 2) (2δ2 − 2n1 + 2n2 + k − 2)

−8
{
4 (δ3 − n2 + n3)

2 − (k − 1)2}]
cδ
n1−1,n2,n3

+
[
4 (2δ2 − 2n1 + 2n2 + k − 1) (2δ3 − 2n2 + 2n3 + k − 1)

+4 (2δ2 − 2n1 + 2n2 − k − 1) (2δ3 − 2n2 + 2n3 − k + 3)

−8
{
4 (δ1 + n1)

2 − (k − 2)2}]
cδ
n1,n2−1,n3

+
[
−2

{
4 (δ2 − n1 + n2)

2 − (k − 1)2} (2δ3 − 2n2 + 2n3 − k − 1)

−2
{
4 (δ1 + n1)

2 − (k − 2)2} (2δ3 − 2n2 + 2n3 − k − 1)
]
cδ
n1,n2,n3−1

+16cδ
n1−2,n2,n3

+ 16cδ
n1,n2−2,n3

+ 32cδ
n1−1,n2−1,n3

−8 (2δ2 − 2n1 + 2n2 + k − 1) cδ
n1,n2−1,n3−1

+16 (2δ3 − 2n2 + 2n3 − k − 1) cδ
n1−1,n2,n3−1 = 0.

Here we understand cδ
n1,n2,n3

= 0 if n1, n2, or n3 < 0.
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Observe that for a fixed characteristic index γ all coefficients cδ
n1,n2,n3

are deter-

mined inductively from an initial non-zero coefficient cδ
0,0,0 by the first difference

equation in Lemma 5.1, which is obtained from the differential operator D2. We can
find the 24 characteristic indices γ as

δ = σ
(ε1ν1

2
,
ε2ν2

2
, κ

)
, κ =

k − 1

2
,(4)

with ε1, ε2 ∈ {±1} and σ ∈ S3, by putting n1 = n2 = n3 = 0 in the system of
difference equations in Lemma 5.1. Here S3 means the symmetric group of degree
3.

Before giving an explicit formula for the secondary Whittaker functions, we shall
discuss the convergence of the power series whose coefficients are given by a solution
of the first difference equation in Lemma 5.1. The followings are based on the idea
of Harish-Chandra (cf. [3, Lemma 4.5]). For complex numbers a, b, c, d, put

∆n1,n2,n3 ≡ ∆n1,n2,n3(a, b, c, d) = n2
1 + n2

2 +
1

2
n2

3− n1n2− n2n3 + an1 + bn2 + cn3 + d.

We can define complex numbers An1,n2,n3 ≡ An1,n2,n3(a, b, c, d, p) inductively by the
recurrence relation{

A0,0,0 = 1,

∆n1,n2,n3An1,n2,n3 = An1−1,n2,n3 + An1,n2−1,n3 + 1
2
(−n2 + n3 + p)An1,n2,n3−1,

(5)

if ∆n1,n2,n3 does not vanish for all (n1, n2, n3) 6= (0, 0, 0).

Lemma 5.2. Set

X := {(a, b, c, d, p) ∈ C5 | ∆n1,n2,n3(a, b, c, d) 6= 0 for all (n1, n2, n3) ∈ N3\{(0, 0, 0)}}.
Let U be any compact subset in X. There exists a positive constant cU depending
only on U such that

|An1,n2,n3(a, b, c, d, p)| ≤ cn1+n2+n3
U /(n1 + n2 + n3)!(6)

for all (n1, n2, n3) ∈ N3 and (a, b, c, d, p) ∈ U . Thus the power series
∑

n1,n2,n3≥0

An1,n2,n3x
n1
1 xn2

2 xn3
3

converges absolutely and uniformly on (x1, x2, x3) ∈ R3
+ and (a, b, c, d, p) ∈ X.

Proof. We prove (6) by induction on n1 + n2 + n3. The case of n1 + n2 + n3 = 0
is obvious. We first estimate ∆n1,n2,n3 . In the following, ci and di mean constants
depending only on U . For (n1, n2, n3) ∈ N3 we have

|∆n1,n2,n3(a, b, c, d)| =
∣∣∣∣
1

2
(n1 + a + b + c)2 +

1

2
(n1 − n2 − b− c)2 +

1

2
(n2 − n3 − c)2

+ d− 1

2
(a + b + c)2 − 1

2
(b + c)2 − 1

2
c2

∣∣∣∣

≥ 1

2

∣∣(n1 + a + b + c)2 + (n1 − n2 − b− c)2 + (n2 − n3 − c)2
∣∣ + d1

≥ c1 (|n1 + a + b + c|+ |n1 − n2 − b− c|+ |n2 − n3 − c|)2 + d1
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≥ c2(n1 + n2 + n3 + d2)
2 + d1

with c1, c2 > 0 and d1, d2 ∈ R. Then there exists a positive integer N depending on
U such that

|∆n1,n2,n3(a, b, c, d)| ≥ c3(n1 + n2 + n3)
2

for all n1 + n2 + n3 > N and (a, b, c, d, p) ∈ U . Put

c4 = min
n1+n2+n3≤N
(a,b,c,d,p)∈U

|∆n1,n2,n3(a, b, c, d)|
(n1 + n2 + n3)2

.

Then we can see c4 > 0 and have

|∆n1,n2,n3(a, b, c, d)| ≥ c5(n1 + n2 + n3)
2

for all (n1, n2, n3) ∈ N3 with c5 = min(c3, c4) > 0. We also take a positive constant
c6 such that

|− n2 + n3 + p| ≤ c6(n2 + n3 + 1)

for (n1, n2, n3) ∈ N3.
Then the recurrence relation (5) and the induction hypothesis imply that

|An1,n2,n3| ≤
1

|∆n1,n2,n3|
(|An1−1,n2,n3|+ |An1,n2−1,n3|+

1

2
|− n2 + n3 + p| · |An1,n2,n3−1|

)

≤ c−1
5

(n1 + n2 + n3)2

{
2cn1+n2+n3−1

U

(n1 + n2 + n3 − 1)!
+

cn1+n2+n3−1
U c6(n2 + n3 + 1)

(n1 + n2 + n3 − 1)!

}

=
c−1
5 cn1+n2+n3−1

U

(n1 + n2 + n3)!
· 2 + c6(n2 + n3 + 1)

n1 + n2 + n3

.

Therefore we take a positive constant c7 such that

2 + c6(n2 + n3 + 1) ≤ c7(n1 + n2 + n3)

for all (n1, n2, n3) 6= (0, 0, 0) and replace cU by max(cU , c−1
5 c7), to obtain the asser-

tion. 2

Now we give the following explicit formula of the secondary Whittaker functions
which is the main result of our previous paper [10].

Theorem 5.3. For each characteristic index γ of the holonomic system (2) given
in (4), put

Mγ(x) = x
3
2
+γ1

1 x
5
2
+γ2

2 x3+γ3

3 exp
(
−x3

2

) ∑
n1,n2,n3≥0

Cδ
n1,n2,n3

xn1
1 xn2

2 xn3
3 ,

where the coefficients {Cδ
n1,n2,n3

} are defined as follows: For l,m, n ∈ Z≥0 and con-
stants a, b, c, a′, b′, c′, put

kl,m,n = kl,m,n(a, b, c, a′, b′, c′)

=
1

n!
· (m + a)n(−l + b)n

(c)n
4F3

( −n, 1− n− c, −m + a′, l + b′

1− n−m− a, 1− n + l − b, c′

∣∣∣∣ 1

)
,
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where (a)n =
Γ(a + n)

Γ(a)
is Pochhammer’s symbol and pFq is the generalized hyperge-

ometric function (cf. [29]). If either δ1 or δ2 is equal to κ, then

Cδ
n1,n2,n3

=
1

n2!
· (α2 + n1)n2−n3

(α1)n2−n3(α3)n2(α4)n3(α5)n1(α6)n1

×kn1,n2,n3(α4,−α2 + 1,−α3 + α4 + 1, 0, α2 + α4 − 1, α3 + α4 − 1),

with the parameters

α1 = −δ3 + κ + 1, α2 = δ1 − δ3 + 1, α3 = δ∗ − δ3 + 1,
α4 = δ∗ + δ3 + 1, α5 = δ1 − κ + 1, α6 = −δ2 + κ + 1,

where δ∗ = δ1 + δ2 − κ. If δ3 = κ, then

Cδ
n1,n2,n3

=
1

n1!(n2 − n3)!
· (β1 + n1)n2−n3

(β1)n2(β2)n1(β3)n3(β4)n2

×kn2,n1,n3(β3, −β1 + 1, −β2 + β3 + 1, 0, β1 + β3 − 1, β2 + β3 − 1),

for n2 ≥ n3 and Cδ
n1,n2,n3

= 0 for n2 < n3, where

β1 = δ1 − κ + 1, β2 = δ1 − δ2 + 1, β3 = δ1 + δ2 + 1, β4 = δ2 − κ + 1.

Then, the set {Mγ(x)} gives a system of linearly independent solutions of the holo-
nomic system (1) at x = (0, 0, 0).

Remark 5.4. If the constants a, b, c, a′, b′, c′ satisfy the relation

a + b− c = −(a′ + b′ − c′),(7)

then Euler’s transformation formula

2F1

(
a, b
c

∣∣∣∣ z

)
= (1− z)c−a−b

2F1

(
c− a, c− b

c

∣∣∣∣ z

)

leads the equation

kl,m,n(a, b, c, a′, b′, c′) = km,l,n(c− b, c− a, c, c′ − b′, c′ − a′, c′).

The parameters of the function k appeared in the formulas of Cδ
n1,n2,n3

in Theorem
5.3 satisfy this condition (7). In particular, the relation kn1,n2,n3 = kn2,n1,n3 holds in
the formula of Cδ

n1,n2,n3
when δ2 = κ.

6. Secondary Whittaker functions; the second formula

In this section, we present different expressions of the secondary Whittaker func-
tions from Theorem 5.3. Since our new formula involves the secondary Whittaker
functions for the class one principal series representations on the split orthogonal
group SO(5,R), or equivalently on Sp(2,R), we first recall the explicit formula of
them ([11], cf. [12]).

Let y = (y1, y2) ∈ R2
+ be the coordinate of the maximal torus of SO(5,R) and

π(ν1,ν2) be the class one principal series representation of SO(5,R) as in [11, §§2-3].
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Then the radial part of the secondary Whittaker function M o
(ν1,ν2)(y) on SO(5,R)

for the characteristic index (ν1, ν1 + ν2) is of the form

M o
(ν1,ν2)(y) = y

3
2
1 y2

2

∑

k1,k2≥0

C
o,(ν1,ν2)
k1,k2

y2k1+ν1
1 y2k2+ν1+ν2

2 ,

where the coefficients {Co,(ν1,ν2)
k1,k2

} are uniquely determined by the initial condition

C
o,(ν1,ν2)
0,0 = 1 and the recurrence relation ([11, (4.1)]):

(
k2

1 +
1

2
k2

2 − k1k2 +
ν1 − ν2

2
k1 +

ν2

2
k2

)
C

o,(ν1,ν2)
k1,k2

= C
o,(ν1,ν2)
k1−1,k2

+
1

2
C

o,(ν1,ν2)
k1,k2−1 .(8)

In [11, Theorem 4.1] we expressed C
o,(ν1,ν2)
k1,k2

in terms of a generalized hypergeometric
series 3F2. Let us rewrite it in the following way.

Proposition 6.1. The solution of the recurrence relation (8) can be written as

C
o,(ν1,ν2)
k1,k2

=
∑

0≤i1≤k1

∑

0≤i2≤min(i1,k2)

1

(i1 − i2)!i2!(k1 − i1)!(k2 − i2)!

× 1

(ν1−ν2

2
+ 1)i1(ν1 + 1)i2(

ν1+ν2

2
+ 1)k1(ν2 + 1)k2−i1

.

Proof. By [11, Theorem 4.1],

C
o,(ν1,ν2)
k1,k2

=
1

k1!k2!(ν1 + 1)k1(ν2 + 1)k2

3F2

( −k1, −k2 − ν1+ν2

2
, k2 + ν1+ν2

2
+ 1

ν1+ν2

2
+ 1, ν1−ν2

2
+ 1

∣∣∣∣ 1

)
.

By using the formula

3F2

( −k1, a, b

c, d

∣∣∣∣ 1

)
=

(c + d− a− b)k1

(c)k1

3F2

( −k1, d− a, d− b

c + d− a− b, d

∣∣∣∣ 1

)

([29, 7.4.4.83]), we have

C
o,(ν1,ν2)
k1,k2

=
1

k1!k2!(
ν1+ν2

2
+ 1)k1(ν2 + 1)k2

3F2

( −k1, k2 + ν1 + 1, −k2 − ν2

ν1 + 1, ν1−ν2

2
+ 1

∣∣∣∣ 1

)

=
1

k1!k2!(
ν1+ν2

2
+ 1)k1(ν2 + 1)k2

∑

0≤i1≤k1

(−k1)i1(k2 + ν1 + 1)i1(−k2 − ν2)i1

i1!(ν1 + 1)i1(
ν1−ν2

2
+ 1)i1

.

In view of

(−k1)i1 = (−1)i1
k1!

(k1 − i1)!
,

(−k2 − ν2)i1

(ν2 + 1)k2

=
(−1)i1

(ν2 + 1)k2−i1

and

(k2 + ν1 + 1)i1

(ν1 + 1)i1

=
∑

0≤i2≤min(i1,k2)

(−k1)i2(−i1)i2

i2!(ν1 + 1)i2

=
∑

0≤i2≤min(i1,k2)

k1!i1!

(k1 − i2)!(i1 − i2)!i2!(ν1 + 1)i2

,

we can reach the desired formula. 2
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We now state another representation for Cδ
n1,n2,n3

.

Theorem 6.2. Under the same notation as in Theorem 5.3, Cδ
n1,n2,n3

can be written
as follows:
(i) if δ1 = κ, then

Cδ
n1,n2,n3

=
∑

0≤k1≤n2

(−1)n3C
o,(2δ2,2δ3)
k1,n3

n1!(n2 − k1)!(−δ2 + κ + 1)n1−k1(−δ3 + κ + 1)n2−n3

;

(ii) if δ2 = κ, then

Cδ
n1,n2,n3

=
∑

0≤k1≤min(n1,n2)

(−1)n3C
o,(2δ1,2δ3)
k1,n3

(n1 − k1)!(n2 − k1)!(δ1 − κ + 1)n1(−δ3 + κ + 1)n2−n3

;

(iii) if δ3 = κ, then

Cδ
n1,n2,n3

=
∑

0≤k1≤n1

(−1)n3C
o,(2δ1,2δ2)
k1,n3

(n1 − k1)!(n2 − n3)!(δ1 − κ + 1)n1(δ2 − κ + 1)n2−k1

for n2 ≥ n3 and Cδ
n1,n2,n3

= 0 for n2 < n3.

Proof. From the first difference equation in Lemma 5.1, we have only to check the
following recurrence relation:

∆n1,n2,n3(δ1 − δ2, δ2 − δ3, δ3, 0)Cδ
n1,n2,n3

= Cδ
n1−1,n2,n3

+ Cδ
n1,n2−1,n3

+
1

2
(−n2 + n3 + δ3 − κ− 1)Cδ

n1,n2,n3−1.
(9)

Here ∆n1,n2,n3(a, b, c, d) is the symbol introduced in the previous section.
Let us consider the case of δ1 = κ. Put

Pn1,n2,n3,k1 =
(−1)n3

n1!(n2 − k1)!(−δ2 + κ + 1)n1−k1(−δ3 + κ + 1)n2−n3

.

Then the right hand side of (9) is written as
∑

0≤k1≤n2

Pn1−1,n2,n3,k1

Pn1,n2,n3,k1

· Pn1,n2,n3,k1C
o,(2δ2,2δ3)
k1,n3

+
∑

0≤k1≤n2−1

Pn1,n2−1,n3,k1

Pn1,n2,n3,k1

· Pn1,n2,n3,k1C
o,(2δ2,2δ3)
k1,n3

+
1

2
(−n2 + n3 + δ3 − κ− 1)

∑

0≤k1≤n2

Pn1,n2,n3−1,k1

Pn1,n2,n3,k1

· Pn1,n2,n3,k1C
o,(2δ2,2δ3)
k1,n3−1 .

(10)

In view of

Pn1−1,n2,n3,k1

Pn1,n2,n3,k1

+
Pn1,n2−1,n3,k1

Pn1,n2,n3,k1

− Pn1,n2,n3,k1+1

Pn1,n2,n3,k1

= n1(n1 − k1 − δ2 + κ) + (n2 − k1)(n2 − n3 − δ3 + κ)− (n2 − k1)(n1 − k1 − δ2 + κ)

= ∆n1,n2,n3(δ1 − δ2, δ2 − δ3, δ3, 0)−
{

k2
1 +

1

2
n2

3 − k1n + (δ2 − δ3)k1 + δ3n3

}
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and
Pn1,n2,n3−1,k1

Pn1,n2,n3,k1

= − 1

m2 − n3 − δ3 + κ + 1
,

(10) becomes a sum of the following four terms:

∆n1,n2,n3(δ1 − δ2, δ2 − δ3, δ3, 0)
∑

0≤k1≤n2

Pn1,n2,n3,k1C
o,(2δ2,2δ3)
k1,n3

,

∑

0≤k1≤n2

Pn1,n2,n3,k1+1

Pn1,n2,n3,k1

· Pn1,n2,n3,k1C
o,(2δ2,2δ3)
k1,n3

=
∑

0≤k1≤n2

Pn1,n2,n3,k1C
o,(2δ2,2δ3)
k1−1,n3

,

1

2

∑

0≤k1≤n2

Pn1,n2,n3,k1C
o,(2δ2,2δ3)
k1,n3−1 ,

and

−
∑

0≤k1≤n2

{
k2

1 +
1

2
n2

3 − k1n + (δ2 − δ3)k1 + δ3n3

}
Pn1,n2,n3,k1C

o,(2δ2,2δ3)
k1,n3

.

Now by means of the recurrence relation (8) for C
o,(2δ2,2δ3)
k1,n3

, we can see that the sum
of last three terms equals to zero, and thus we finish the proof of (9). The cases of
δ2 = κ and δ3 = κ can be similarly done. 2

Remark 6.3. We can directly derive the second expressions for Cδ
n1,n2,n3

from The-
orem 5.3 by applying the identity

Γ(p + q + m + 1)

Γ(p + 1)Γ(q + m + 1)Γ(p + q + 1)
=

∑
0≤i≤m

m!

i!(m− i)!Γ(p− i + 1)Γ(q + i + 1)
,

which is equivalent to Gauss’ summation formula ([37]).

7. Primary Whittaker functions

In this section we consider the space Wh(π, η, τ)mod. According to [30] the di-
mension this space is at most one. We call the unique (up to a constant) element
in this space primary Whittaker function and give an explicit integral formula of
(a radial part of) it. As in the previous section our formula comes from the class
one Whittaker function on SO(5,R), that is, unique moderate growth Whittaker
function for the class one principal series representation π(ν1,ν2) on SO(5,R). Let us
recall the integral representation of it.

Proposition 7.1. ([11, Theorem 4.2]) Let W o(y) = y
3
2
1 y2

2W̃
o(y) with

W̃ o(y) = 4y
− ν1+ν2

2
1 y

ν1+ν2
2

2

×
∫ ∞

0

∫ ∞

0

K ν1−ν2
2

(
2y1

√
(1 + 1/u1)(1 + 1/u2)

)
K ν1+ν2

2

(
2y2

√
1 + u1 + u2

)

×
(

u2
1u

2
2

1 + u1 + u2

)ν1+ν2
4

(
u1(1 + u1)

u2(1 + u2)

)ν1−ν2
4 du1

u1

du2

u2

.
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Here Kν(z) is the K-Bessel function ([37]). Then, up to a constant multiple, W o(y)
is the radial part of the class one Whittaker function on SO(5,R).

Hashizume ([4]) obtained explicit linear relations between the class one Whit-
taker functions and the secondary Whittaker functions for arbitrary semisimple Lie
groups. See also [11, §4] and [12, §4] for an elementary proof of Hashizume’s result
in the case of SO(5,R).

Proposition 7.2. ([4, Theorem 7.8], [11, Theorem 4.2])

W o(y) =
∑
w∈W

w

[
Γ(−ν1)Γ(−ν2)Γ

(
−ν1 + ν2

2

)
Γ

(
−ν1 − ν2

2

)
M o

(ν1,ν2)(y)

]
.

Here W = 〈w1, w2〉 ∼= S2 n (Z/2Z)2 is the Weyl group of SO(5,R), and the action
of the generators on the parameter of the class one principal series π(ν1,ν2) is given
by w1(ν1, ν2) = (ν2, ν1) and w2(ν1, ν2) = (−ν1, ν2).

Our main result in this section is as follows.

Theorem 7.3. Let W (x) = x
3
2
1 x

5
2
2 x3

3 exp(−x3

2
)W̃ (x) with

W̃ (x) =

∫ ∞

0

∫ ∞

0

exp

(
−t1 − t2 − x1

t1
− x2

t2

)

×
(

x1x2x3

t1t2

)κ

W̃ o

(√
x2

t1
t2

,
√

x3t2

)
dt1
t1

dt2
t2

.

(11)

Then, up to a constant multiple, W (x) is the radial part of the primary Whittaker
function and can be written as a linear combination of the secondary Whittaker
functions Mδ(x) in Theorem 5.3 as follows:

W (x) =
∑
w∈W

w

[
Γ(−ν1)Γ(−ν2)Γ

(
−ν1 + ν2

2

)
Γ

(
−ν1 − ν2

2

)

×
{

Γ
(ν1

2
− κ

)
Γ

(ν2

2
− κ

)
M(κ,

ν1
2

,
ν2
2

)(x)

+ Γ
(
−ν1

2
+ κ

)
Γ

(ν2

2
− κ

)
M(

ν1
2

,κ,
ν2
2

)(x)

+ Γ
(
−ν1

2
+ κ

)
Γ

(
−ν2

2
+ κ

)
M(

ν1
2

,
ν2
2

,κ)(x)

}]
.

(12)

Proof. The moderate growth property follows from the rapid decay of the class one
Whittaker function W o on SO(5,R). Since the dimension of the space Wh(π, η, τ)mod

is at most one ([30]), we need to show W (x) is contained in the space Wh(π, η, τ)mod.
Hence it is enough to prove the expansion formula (12).
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We substitute the expansion formula for W o into (11) to find

W̃ (x) =
∑

w

w

[
Γ(−ν1)Γ(−ν2)Γ

(
−ν1 + ν2

2

)
Γ

(
−ν1 − ν2

2

)

×
∫ ∞

0

∫ ∞

0

exp

(
−t1 − t2 − x1

t1
− x2

t2

)
·
(

x1x2x3

t1t2

)κ

×
∑

k1,k2≥0

C
o,(ν1,ν2)
k1,k2

(
x2

t1
t2

)k1+
ν1
2

(x3t2)
k2+

ν1+ν2
2

dt1
t1

dt2
t2

]
.

(13)

If we allow the change of the order of integration and infinite sum in (13) (this
interchange is justified later), it can be written as

W̃ (x) =
∑

w

w

[
Γ(−ν1)Γ(−ν2)Γ

(
−ν1 + ν2

2

)
Γ

(
−ν1 − ν2

2

)

×
∑

k1,k2≥0

C
o,(ν1,ν2)
k1,k2

x
k2+

ν1+ν2
2

+κ

3 J1(x1)J2(x2)

]
,

(14)

with

J1(x1) = xκ
1

∫ ∞

0

exp

(
−t1 − x1

t1

)
t
k1+

ν1
2
−κ

1

dt1
t1

,

J2(x2) = x
k1+

ν1
2

+κ

2

∫ ∞

0

exp

(
−t2 − x2

t2

)
t
−k1+k2+

ν2
2
−κ

2

dt2
t2

.

By using
∫ ∞

0

exp
(
−t− x

t

)
ts+k dt

t

= 2x
s+k
2 Ks+k(2

√
x)

=
π

sin(s + k)π

(∑
i≥0

xi

i!Γ(i− s− k + 1)
−

∑
i≥0

xi+s

i!Γ(i + s + k + 1)

)

= (−1)k

(∑
i≥0

Γ(s) · xi

i!(−s + 1)i−k

+
∑
i≥0

Γ(−s) · xi+s+k

i!(s + 1)i+k

)

for k ∈ Z and s /∈ Z ([37]), we get

J1(x1) = (−1)k1





∑
n1≥0

Γ(ν1

2
− κ) · xn1+κ

1

n1!(−ν1

2
+ κ + 1)n1−k1

+
∑
n1≥0

Γ(−ν1

2
+ κ) · xn1+k1+

ν1
2

1

n1!(
ν1

2
− κ + 1)n1+k1



 ,

J2(x2) = (−1)k1−k2





∑
n2≥0

Γ(ν2

2
− κ) · xn2+k1+

ν1
2

+κ

2

n2!(−ν2

2
+ κ + 1)n2+k1−k2

+
∑
n2≥0

Γ(−ν2

2
+ κ) · xn2+k2+

ν1+ν2
2

2

n2!(
ν2

2
− κ + 1)n2−k1+k2



 .
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We substitute the above into (14) and arrange the order of summation to find

W o(x) =
∑

w

w

[
Γ(−ν1)Γ(−ν2)Γ

(
−ν1 + ν2

2

)
Γ

(
−ν1 − ν2

2

)

×
( ∑

n1,n2,n3≥0

C1
n1,n2,n3

xn1+κ
1 x

n2+
ν1
2

+κ

2 x
n3+

ν1+ν2
2

+κ

3

+
∑

n1,n2,n3≥0

C2
n1,n2,n3

xn1+κ
1 x

n2+
ν1+ν2

2
2 x

n3+
ν1+ν2

2
+κ

3

+
∑

n1,n2,n3≥0

C3
n1,n2,n3

x
n1+

ν1
2

1 x
n2+

ν1
2

+κ

2 x
n3+

ν1+ν2
2

+κ

3

+
∑

n1,n2,n3≥0

C4
n1,n2,n3

x
n1+

ν1
2

1 x
n2+

ν1+ν2
2

2 x
n3+

ν1+ν2
2

+κ

3

)]
,

where

C1
n1,n2,n3

=
∑

0≤k1≤n2

Γ(ν1

2
− κ)Γ(ν2

2
− κ) · (−1)n3C

o,(ν1,ν2)
k1,n3

n1!(n2 − k1)!(−ν1

2
+ κ + 1)n1−k1(−ν2

2
+ κ + 1)n2−n3

,

C2
n1,n2,n3

=
∑

0≤k1

Γ(ν1

2
− κ)Γ(−ν2

2
+ κ) · (−1)n3C

o,(ν1,ν2)
k1,n3

n1!(n2 − n3)!(−ν1

2
+ κ + 1)n1−k1(

ν2

2
− κ + 1)n2−k1

,

C3
n1,n2,n3

=
∑

0≤k1≤min(n1,n2)

Γ(−ν1

2
+ κ)Γ(ν2

2
− κ) · (−1)n3C

o,(ν1,ν2)
k1,n3

(n1 − k1)!(n2 − k1)!(
ν1

2
− κ + 1)n1(−ν2

2
+ κ + 1)n2−n3

,

C4
n1,n2,n3

=
∑

0≤k1≤n1

Γ(−ν1

2
+ κ)Γ(−ν2

2
+ κ) · (−1)nC

o,(ν1,ν2)
k1,n3

(n1 − k1)!(n2 − n3)!(
ν1

2
− κ + 1)n1(

ν2

2
− κ + 1)n2−k1

.

Here C2
n1,n2,n3

= C4
n1,n2,n3

= 0 for n2 < n3. The following lemma ensures the change
of the order of integration and infinite sum in (13).

Lemma 7.4. The coefficient C i
n1,n2,n3

satisfies the recurrence relation

∆n1,n2,n3(ai, bi, ci, di)C
2
n1,n2,n3

= C i
n1−1,n2,n3

+ Ci
n1,n2−1,n3

+
1

2
(−n2 + n3 + ci − κ− 1)Ci

n1,n2,n3−1,
(15)

with

(ai, bi, ci, di) =





(
κ− ν1

2
, ν1−ν2

2
, ν2

2
, 0

)
i = 1,(−ν1+ν2

2
+ 2κ, ν1+ν2

2
− 2κ, κ, (ν1

2
− κ)(ν2

2
− κ)

)
i = 2,(

ν1

2
− κ, κ− ν2

2
, ν2

2
, 0

)
i = 3,(

ν1−ν2

2
, ν2

2
− κ, κ, 0

)
i = 4.

Moreover the power series
∑

n1,n2,n3≥0 Ci
n1,n2,n3

xn1
1 xn2

2 xn3
3 converges absolutely and

uniformly for (ν1, ν2) ∈ {(ν1, ν2) ∈ C2 | ∆n1,n2,n3(ai, bi, ci, di) 6= 0, ∀(n1, n2, n3) ∈
N3\{(0, 0, 0)}} and (x1, x2, x3) ∈ R3

+.
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Proof of lemma. The claim for i = 1, 3, 4 is immediate from Theorem 6.2. The case
of C2

n1,n2,n3
is similarly done. Actually (15) follows from the identity:

n1

(
n1 − k1 − ν1

2
+ κ

)
+ (n2 − n3)

(
n2 − k1 +

ν2

2
− κ

)

−
(
n1 − k1 − ν1

2
+ κ

)(
n2 − k1 +

ν2

2
− κ

)

= ∆n1,n2,n3(a2, b2, c2, d2)−
(

k2
1 +

1

2
n2

3 − k1n3 +
ν1 − ν2

2
k1 +

ν2

2
n3

)
.

Therefore, in view of Lemma 5.2, we can finish the proof of lemma. 2

Let us return to the proof of Theorem 7.3. From Lemma 7.4 and Theorem 6.2, it
suffices to show

∑
w

w

[
Γ(−ν1)Γ(−ν2)Γ

(
−ν1 + ν2

2

)
Γ

(
−ν1 − ν2

2

)

×
∑

n1,n2,n3≥0

C2
n1,n2,n3

xn1+κ
1 x

n2+
ν1+ν2

2
2 x

n3+
ν1+ν2

2
+κ

3

]
= 0

to prove the expansion formula (12). Hence the following lemma concludes Theorem
7.3. 2

Lemma 7.5. Put

B(ν1,ν2)
n1,n2,n3

= Γ(−ν1)Γ(−ν2)Γ

(
−ν1 + ν2

2

)
Γ

(
−ν1 − ν2

2

)
· C2

n1,n2,n3
,

and
B̃(ν1,ν2)

n1,n2,n3
= B(ν1,ν2)

n1,n2,n3
+ Bw1(ν1,ν2)

n1,n2,n3
= B(ν1,ν2)

n1,n2,n3
+ B(ν2,ν1)

n1,n2,n3
.

Then we have B̃
(ν1,ν2)
n1,n2,n3 = 0 for all (n1, n2, n3) ∈ N3.

Proof of lemma. We can see that the recurrence relation (15) is invariant under the

action of w1 on (ν1, ν2), then B
w1(ν1,ν2)
n1,n2,n3 satisfies (15), therefore B̃

(ν1,ν2)
n1,n2,n3 also satisfies

it. Then if we can verify B̃
(ν1,ν2)
0,0,0 = 0, we may conclude that B̃

(ν1,ν2)
n1,n2,n3 = 0 inductively.

Since the recurrence relation (8) leads

C
o,(ν1,ν2)
k1,0 =

Γ(ν1−ν2

2
+ 1)

k1!Γ(k1 + ν1−ν2

2
+ 1)

,

we have

B
(ν1,ν2)
0,0,0 = Γ(−ν1)Γ(−ν2)Γ

(
−ν1 + ν2

2

)
Γ

(
−ν1 − ν2

2

)
Γ

(ν1

2
− κ

)
Γ

(
−ν2

2
+ κ

)

×
∑

k1≥0

Γ(−ν1

2
+ κ + 1)Γ(ν2

2
− κ + 1)

Γ(−k1 − ν1

2
+ κ + 1)Γ(−k1 + ν2

2
− κ + 1)

· Γ(ν1−ν2

2
+ 1)

k1!Γ(k1 + ν1−ν2

2
+ 1)

.

By means of the identity:
∑

k1≥0

Γ(a)Γ(b)Γ(c)

k1!Γ(a− k1)Γ(b− k1)Γ(c + k1)
=

Γ(c)Γ(a + b + c− 2)

Γ(a + c− 1)Γ(b + c− 1)
,
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which follows from Gauss’ summation formula ([37]), we get

B
(ν1,ν2)
0,0,0 = Γ(−ν1)Γ(−ν2)Γ

(
−ν1 + ν2

2

)
Γ

(
−ν1 − ν2

2

)
Γ

(ν1

2
− κ

)
Γ

(
−ν2

2
+ κ

)

× Γ(ν1−ν2

2
+ 1)

Γ(−ν2

2
+ κ + 1)Γ(ν1

2
− κ + 1)

= Γ(−ν1)Γ(−ν2)Γ

(
−ν1 + ν2

2

)
· π

sin (−ν1−ν2

2
)π
· 1

(ν1

2
− κ)(−ν2

2
+ κ)

.

Then we can see that B̃
(ν1,ν2)
0,0,0 = B

(ν1,ν2)
0,0,0 + B

w1(ν1,ν2)
0,0,0 = 0. 2

Remark 7.6. Miyazaki and Oda ([22]) obtained the explicit formula of the PJ-
principal series Whittaker functions on Sp(2,R). The radial part of the primary

Whittaker function is W 2(x1, x2) = x1x
3
2
2 exp(−x2

2
)W̃ 2(x1, x2) with

W̃ 2(x1, x2) = x
k−1
2

1 xk−1
2

∫ ∞

0

t−k+ 1
2 W0,ν(t) exp

(
− t2

16x2

− 16x1x2

t2

)
dt

t
.

Here Wκ,µ is the classical Whittaker function ([37]). By using W0,ν(t) =
√

t/πKν(t/2)
and substituting t → 4

√
tx2, we arrive at

W̃ 2(x1, x2) = 21−2kπ−
1
2

∫ ∞

0

(x1x2

t

)k−1
2

Kν

(
2
√

tx2

)
exp

(
−t− x1

t

) dt

t
.

We note that
√

xKν(x) is a radial part of the class one Whittaker function on
SO(3,R). Hence we may expect the primary PJ-principal series Whittaker functions
on Sp(n,R) are written in terms of the class one Whittaker functions SO(2n+1,R).

8. Mellin-Barnes integral representations

In this section we give a Mellin-Barnes integral representation of the primary
Whittaker function W (x). A (single) Mellin-Barnes integral is the contour integral
of the form ∫

z

F (z)zs dz,

where the path of integration is a line parallel to the imaginary axis in the complex
plane, of sufficiently large real part to ensure that all the poles of F (z) on its left.

A Mellin-Barnes integral representation for the class one Whittaker function

W o(y) = y
3
2
1 y2

2W̃
o(y) on SO(5,R) is given in [11] (cf. [12]). We first rewrite it.

Proposition 8.1. We have

W̃ o(y) =
22

(2π
√−1)2

∫

σ1

∫

σ2

V o(σ1, σ2) y−2σ1
1 y−2σ2

2 dσ2dσ1,

where the 2-chain of integration is a product of paths given by

(ρ1 −
√−1∞, ρ1 +

√−1∞)× (ρ2 −
√−1∞, ρ2 +

√−1∞)

with the real numbers ρ1 and ρ2 fixed as
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ρ1 > sup{|Re(ν1)|, |Re(ν2)|}; ρ2 > sup{|Re(ν1 + ν2)|, |Re(ν1 − ν2)|},
and

V o(σ1, σ2) = Γ
(
σ1 +

ν2

2

)
Γ

(
σ1 − ν2

2

)
Γ(σ2)

× 1

2π
√−1

∫

τ

Γ(σ1 + τ)Γ(σ2 + τ + ν2

2
)Γ(σ2 + τ − ν2

2
)Γ(−τ + ν1

2
)Γ(−τ − ν1

2
)

Γ(σ1 + σ2 + τ)
dτ.

Proof. By [11, p.532 (4.5)],

V o(σ1, σ2) = Γ
(
σ1 +

ν1

2

)
Γ

(
σ1 − ν1

2

)
Γ

(
σ1 +

ν2

2

)
Γ

(
σ1 − ν2

2

)

× Γ(σ2)Γ(σ2 + ν1+ν2

2
)Γ(σ2 + ν1−ν2

2
)Γ(σ2 − ν1−ν2

2
)

Γ(σ1 + σ2 + ν1

2
)Γ(σ1 + σ2 + ν2

2
)

× 3F2

(
σ1 + ν1

2
, σ1 + ν2

2
, σ2 + ν1+ν2

2

σ1 + σ2 + ν1

2
, σ1 + σ2 + ν2

2

∣∣∣∣ 1

)
.

If we use the formula

Γ(a)Γ(b)Γ(d− a)Γ(d− b)Γ(e− c)

Γ(d)Γ(e)
3F2

(
a, b, c

d, e

∣∣∣∣ 1

)

=
1

2π
√−1

∫

τ

Γ(a + τ)Γ(b + τ)Γ(e− c + τ)Γ(d− a− b− τ)Γ(−τ)

Γ(e + τ)
dτ

([31, 4.2.2]) with a = σ1 + ν1

2
, b = σ2 + ν1+ν2

2
, c = σ1 + ν2

2
, d = σ1 + σ2 + ν2

2
,

e = σ1 + σ2 + ν1

2
and substitute τ → τ − ν1

2
, we find the desired expression. 2

Theorem 8.2. We have

W̃ (x) =
4

(2π
√−1)4

∫

σ1

∫

σ2

∫

s1

∫

s2

V o(σ1, σ2)Γ(s1)Γ(s1 − σ1 − κ)

× Γ(s2)Γ(s2 + σ1 − σ2 − κ) x−s1+κ
1 x−s2−σ1+κ

2 x−σ2+κ
3 ds2ds1dσ2dσ1.

Here the 4-chain of multiple Mellin-Barnes integrals is taken such that

Re(σ1 + κ) > Re(s1) > 0; Re(−σ1 + σ2 + κ) > Re(s2) > 0;

Re(σ1) > sup{|Re(ν1)|, |Re(ν2)|}; Re(σ2) > sup{|Re(ν1 + ν2)|, |Re(ν1 − ν2)|}.
Proof. We substitute the Mellin-Barnes integral representation of W̃ o(y) into (11)
to find

W̃ (x) =
4

(2π
√−1)2

∫

σ1

∫

σ2

V o(σ1, σ2)

∫ ∞

0

∫ ∞

0

exp

(
−t1 − t2 − x1

t1
− x2

t2

)

×
(

x1x2x3

t1t2

)κ (
x2

t1
t2

)−σ1

(x3t2)
−σ2

dt1
t1

dt2
t2

dσ2dσ1.

In view of ∫ ∞

0

exp
(
−t− x

t

)
tα

dt

t
= 2x

α
2 Kα

(
2
√

x
)
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=
1

2π
√−1

∫

s

Γ(s)Γ(s + α)x−s ds,

for α ∈ C ([37]) we have the assertion. 2

Correction There is an obvious mistake in our previous paper [8]. In the definition
of I(PJ ; σ, ν) in the end of section 1, exp(ν + 1) should be exp(ν + 2). We thank
Mr. Tadashi Miyazaki for pointing out this error.
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