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Abstract. We consider a solution u(p, g, a, b) to an initial value-boundary value
problem for a hyperbolic equation:

∂2
t u(x, t) = ∆u(x, t) + p(x)u(x, t), x ∈ Ω, 0 < t < T

u(x, 0) = a(x), ∂tu(x, 0) = b(x), x ∈ Ω,

u(x, t) = g(x, t), x ∈ ∂Ω, 0 < t < T.

and we discuss an inverse problem of determining a coefficient p(x) and a, b by ob-
servations of u(p, g, a, b)(x, t) in a neighbourhood ω of ∂Ω over a time interval (0, T )
and u(p, g, a, b)(x, T0), ∂tu(p, g, a, b)(x, T0), x ∈ Ω with T0 < T . We prove that if
T −T0 and T0 are larger than the diameter of Ω, then we can choose a finite number
of Dirichlet boundary inputs g1, ..., gN by the Hilbert Uniqueness Method, so that
the mapping

{u(p, gj , aj , bj)|ω×(0,T ), u(p, gj , aj , bj)(·, T0), ∂tu(p, gj , aj , bj)(·, T0)}1≤j≤N −→ {p, aj , bj}1≤j≤N

is uniformly Lipschitz continuous with suitable Sobolev norms provided that {p, aj , bj}1≤j≤N

remains some bounded set in a suitable Sobolev space. In our inverse problem, initial
values are also unknown, and we do not assume any positivity of initial values at all.
Our key is a Carleman estimate and the exact controllability in a Sobolev space of
higher order.
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2 R. CIPOLLATI AND M. YAMAMOTO

§1. Introduction.

Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω and let us consider

∂2
t u(x, t) = ∆u(x, t) + p(x)u(x, t), x ∈ Ω, t > 0, (1.1)

u(x, 0) = a(x), ∂tu(x, 0) = b(x), x ∈ Ω (1.2)

and

u(x, t) = g(x, t), x ∈ ∂Ω, t > 0 (1.3)

Let g ∈ L2(∂Ω×(0, T )) be given and smooth suitably. Then by u = u(p, g, a, b)(x, t)

we denote the solution to (1.1) - (1.3) within a suitable class which is described

later. Let ν = ν(x) be the unit outward normal vector to ∂Ω at x, ∂u
∂ν = ∇u · ν,

and let ω ⊂ Ω be a subdomain.

In this paper, we discuss an inverse problem of determining p = p(x), x ∈ Ω by

some observations. That is,

Inverse Problems. Let 0 < T0 < T1 be given. Given g1, ..., gN ∈ L2(∂Ω× (0, T )),

determine p(x), aj(x), bj(x) ∈ Ω, 1 ≤ j ≤ N , by

u(p, gj , aj , bj)|ω×(0,T )), u(p, gj , aj , bj)(x, T0), x ∈ Ω, j = 1, ..., N.

This is an inverse problem by a finite time of interior observations. As long as

inverse problems of determining coefficients in multidimensions by a finite number

of observations without smallness are concerned, one main methodology is by a

Carleman estimate, which was initiated by Bukhgeim and Klibanov [10]. See also

Baudouin and Puel [1], Bellassoued [3], [4], Bellassoued and Yamamoto [6], [7],

Bellassoued, Imanuvilov and Yamamoto [8], Imanuvilov, Isakov and Yamamoto [15],

Imanuvilov and Yamamoto [16-19], Isakov [20], [21], Klibanov [23], [24], Klibanov
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and Timonov [26], Klibanov and Yamamoto [27], Puel and Yamamoto [35], [36],

Yamamoto [40].

For example, by a method in Imanuvilov and Yamamoto [16], [17], we can prove

Theorem 0. Let a constant M > 0 and a smooth function η on Ω be arbitrarily

given. Let 0 < t1 < T0 and ω ⊂ Ω be a subdomain such that ∂ω ⊃ ∂Ω. We set

U0 = {p ∈ W 1,∞(Ω); ‖p‖W 1,∞(Ω) ≤ M, p = η in ω}.

Let u = u(p, g, a, b) ∈ ∩2
j=0C

j([T0 − t1, T0 + t1];H3−j(Ω)) satisfy (1.1),

u(x, T0) = a(x), ∂tu(x, T0) = b(x), x ∈ Ω

and

u|∂Ω×(T0−t1,T0+t1) = g

with suitable functions a, b, g. Moreover let

‖u(p, g, a, b)‖Cj([T0−t1,T0+t1];H3−j(Ω)),

‖u(p̃, g̃, ã, b̃)‖Cj([T0−t1,T0+t1];H3−j(Ω)) ≤ M, j = 0, 1, 2.

We assume that there exists a constant δ0 > 0 such that

|a(x)|, |ã(x)| ≥ δ0 on Ω \ ω (1.4)

and that

t1 > inf
x′∈Rn\(Ω\ω)

sup
x∈Ω

|x− x′|.

Then there exists a constant C = C(M, δ0, ω, T0, t1) > 0 such that

‖p− p̃‖L2(Ω) ≤ C

(
‖u(p, g, a, b)− u(p̃, g̃, ã, b̃)‖C3([T0−t1,T0+t1];L2(ω))

+‖u(p, g, a, b)− u(p̃, g̃, ã, b̃)‖C1([T0−t1,T0+t1];H2(ω))

+‖a− ã‖H2(Ω) + ‖b− b̃‖H2(Ω)

)
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for all p, p̃ ∈ U0.

As for the Lipschitz stability without assumption that p, p̃ are given in ω, see

for example Imanuvilov and Yamamoto [16], [17]. For completeness, we will prove

Theorem 0 in Appendix I.

Here we assume that coefficients p and p̃ are given in a boundary layer ω and we

determine them in Ω \ ω by observations of the solutions in ω × (T0 − t1, T0 + t1).

For the Lipschitz stability in our inverse problem, we have to assume the strict

positivity (1.4) on Ω \ ω of the given displacement at t = T0. The Lipschitz stability

is mathematically satisfactory, but such a positivity condition is quite restrictive,

because (1.4) requires that we have to control the spatial distribution of the state

over a domain where coefficients are uknown. There have been many trials for

relaxing (1.4) (e.g., a 6≡ 0 in Ω), but it remains a serious open problem. We

note that with impulsive force terms represented by a Dirac delta function, the

Lipschitz stability results are known with a ≡ 0 with some smallness assumption

and see Glushkova [13], Li [32], Romanov [37], Romanov and Yamamoto [38].

On the other hand, by the Dirichlet-to-Neumann map requiring infinitely many

observations, we know the sharp uniqueness results (e.g., Belishev [2], Kurylev and

Lassas [30]) and stability (e.g., Bellassoued, Jellali and Yamamoto [5], Cipolatti

and F.Lopez [11], Sun [39]).

This paper gives a partial answer to the longstanding open problem: the Lip-

schitz stability by a finite number of observations without any positivity assump-

tions. The characters of our inverse problem are:

(1) We take observations N times by suitably choosing boundary inputs g1, ..., gN .

(2) Initial values at t = 0 are unknown, while we have to observe displacements
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and velocities at a fixed intermediate time T0 corresponding to g1, ..., gN .

We emphasize that we need not assume any positivity of functions in Ω, and we

assume that g1, ..., gN are at our disposal.

For the statement of our main result, we intoduce notations. Let ∂j = ∂
∂xj

,

1 ≤ j ≤ n, α = (α1, ..., αn) ∈ N ∪ {0}, |α| = α1 + · · · + αn and ∂α
x = ∂α1

1 · · · ∂αn
n .

Let C`,1(Ω), ` ∈ N, be the space of all the functions whose derivatives of or-

ders ≤ ` are all Lipschitz continuous on Ω and we set ‖p‖C`,1(Ω) = ‖p‖C1(Ω) +

sup|α|=`,x,x′∈Ω,x 6=x′
|∂α

x p(x)−∂α
x p(x′)|

|x−x′| . Let M > 0 be arbitrarily fixed and let ω ⊂ Ω

be a subdomain such that ∂ω ⊃ ∂Ω, η be an arbitrarily given smooth function. Let

m ∈ N satisfy

m >
n

4
.

Let

U = {p ∈ C2m(Ω); ‖p‖C2m(Ω) ≤ M, p = η in ω, p ≤ 0 in Ω}

and

V = {(a, b) ∈ H2m
0 (Ω)×H2m−1

0 (Ω); ‖a‖H2m(Ω), ‖b‖H2m−1(Ω) ≤ M}.

We define a Hilbert space

V2m = {g ∈ H2m(0, T ; L2(∂Ω)); ∂j
t g(·, T0) = 0, j = 0, 1, 2, · · · , 2m− 1}

with the scalar product (g, h)V2m = (∂2m
t g, ∂2m

t h)L2(0,T0;L2(∂Ω)).

Now we are ready to state our main result.

Theorem. Let 



T − T0 > inf
x′∈Rn\(Ω\ω)

sup
x∈Ω

|x− x′|,

T0 > inf
x′∈Rn\(Ω\ω)

sup
x∈Ω

|x− x′|.
(1.5)
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For M > 0, we can choose N ∈ N and g1, ..., gN ∈ V2m satisfying:

‖p− p̃‖L2(Ω) +
N∑

j=1

‖aj − ãj‖H1(Ω) +
N∑

j=1

‖bj − b̃j‖L2(Ω)

≤C

(
N∑

j=1

‖u(p, gj , aj , bj)− u(p̃, gj , ãj , b̃j)‖C3([0,T ];L2(ω))

+
N∑

j=1

‖u(p, gj , aj , bj)− u(p̃, gj , ãj , b̃j)‖C1([0,T ];H2(ω))

+
N∑

j=1

‖(u(p, gj , aj , bj)− u(p̃, gj , ãj , b̃j))(·, T0)‖H2(Ω)

+
N∑

j=1

‖(∂tu(p, gj , aj , bj)− ∂tu(p̃, gj , ãj , b̃j))(·, T0)‖H2(Ω)

)

for any (aj , bj), (ãj , b̃j) ∈ V and p, p̃ ∈ U .

The theorem asserts that we can choose N boundary inputs yielding the Lip-

schitz stability in estimating p − p̃ when both p and p̃ vary in the admissible set.

The essence of our main result is the uniform choice in p of the boundary inputs

guaranteeing the Lipschitz stability. By the classical exact controllability for the

hyperbolic equation (e.g., Komornik [28], Lions [33]), we can directly see: if we will

estimate p − p̃ with a fixed p̃ ∈ U , then the Lipschitz stability holds with a single

suitable input g. Moreover precisely, we assume (1.5). For any given p̃ ∈ U , there

exists g ∈ V2m such that

‖p− p̃‖L2(Ω) + ‖a− ã‖H1(Ω) + ‖b− b̃‖L2(Ω)

≤C

(
‖u(p, g, a, b)− u(p̃, g, ã, b̃)‖C3([0,T ];L2(ω)) + ‖u(p, g, a, b)− u(p̃, g, ã, b̃)‖C1([0,T ];H2(ω))

+‖(u(p, g, a, b)− u(p̃, g, ã, b̃))(·, T0)‖H2(Ω)

+‖(∂tu(p, g, a, b)− ∂tu(p̃, g, ã, b̃))(·, T0)‖H2(Ω)

)

for any (a, b), (ã, b̃) ∈ V and p ∈ U .
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As is also seen from the proof;

(1) The number N of observations increases as the a priori bound M > 0 is

larger.

(2) The effective boundary inputs g1, ..., gN can be constructed by the Hilbert

Uniqueness Method (e.g., Komornik [28], Lions [33]). See the proof in

Section 3 as for the construction. Moreover choices of such inputs g1, ..., gN

are rather generous (Remark in Section 3).

The paper is composed of three sections. In Section 2, we show a necessary exact

controllability in a Sobolev spaces of higher orders, which may be an independent

interest. In Section 3, we prove Theorem.

§2. Exact controllability in H2m(Ω).

In the state space L2(Ω) × H−1(Ω) for a hyperbolic equation, the exact control-

labililty has been studied extensively. Here we only refer to a ver few works: Ko-

mornik [28], Lasiecka and Triggiani [31], Lions [33] and the readers can consult

them for comprehensive references. For the proof of our result, we need the ex-

act controllability of displacement in Sobolev spaces of higher orders. The exact

controllability in H1
0 (Ω) × L2(Ω) has been discussed in Section 6 of Chapitre 1 in

Komornik and Yamamoto [29], Lions [33] for ∂2
t −∆.

Let ω ⊂ Ω be a subdomain such that ∂ω ⊃ ∂Ω and let

T0 > inf
x′∈Rn\(Ω\ω)

sup
x∈Ω

|x− x′|. (2.1)

Henceforth let x0 ∈ Rn \ (Ω \ ω) satisfy

inf
x′∈Rn\(Ω\ω)

sup
x∈Ω

|x− x′| = sup
x∈Ω

|x− x0| < T0.

Here (·, ·) and ‖ · ‖ denote the scalar product and the norm in L2(Ω). Let p ∈

U1 = {p; ‖p‖C2m−2,1(Ω) ≤ M, p ≤ 0 in Ω} be fixed and let us define an operator
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A by Au(x) = −∆u(x) − p(x)u(x) for x ∈ Ω and D(A) = H2(Ω) ∩H1
0 (Ω). Then

A−1 exists and σ(A) is entirely composed of eigenvalues with finite multiplicities.

Let 0 < λ1 < λ2 ≤ λ3 ≤ · · · be the sequence of all the eigenvalues of A where λj

appears repeatedly kj-times, where kj is the multiplicity of λj . Let ϕj be a unit

eigenvector of A for λj . Then {ϕj}j∈N is an orthonormal basis in L2(Ω) and

A−ma =
∞∑

j=1

(a, ϕj)
λm

j

ϕj

in L2(Ω).

Since p ∈ C2m−2,1(Ω), elliptic regularity results (e.g., Theorem 8.13 (p.187) in

Gilbarg and Trudinger [12]) yield

C−1
1 ‖Au‖ ≤ ‖u‖H2(Ω) ≤ ‖Au‖, u ∈ D(A).

Next, using ‖Ak−1u‖ ≤ C ′1‖Aku‖ for u ∈ D(Ak) and k ∈ N, we repeatedly apply

Theorem 8.13 in [12] and we see

C−1
1 ‖Amu‖ ≤ ‖u‖H2m(Ω) ≤ C1‖Amu‖, u ∈ D(Am). (2.2)

Here we note that the constant C1 > 0 can be taken uniformly in p ∈ U1. In

particular, D(Am) ⊂ H2m(Ω), m ∈ N. We regard D(Am) as a Banach space with

the norm

‖a‖D(Am) = ‖Ama‖ =




∞∑

j=1

λ2m
j (a, ϕj)2




1
2

.

Moreover, for γ ≥ 0, we can see that

Aγa =
∞∑

j=1

λγ
j (a, ϕj)ϕj ,

D(Aγ) = {a ∈ L2(Ω);
∞∑

j=1

λ2γ
j (a, ϕj)2 < ∞}. (2.3)
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Identifying a Banach space D(A0) = L2(Ω) with its dual (L2(Ω))∗, we have the

dense and continuous embedding

D(Am) ⊂ L2(Ω) ⊂ D(Am)∗.

Henceforth B(X,Y ) denotes the Banach space of all bounded linear operators from

a Banach space X to another Banach space Y , L∗ denotes the dual operator of

L ∈ B(X,Y ). We regard Am as a bounded linear operator from D(Am) to L2(Ω):

Am ∈ B(D(Am), L2(Ω)). Then (Am)∗ ∈ B(L2(Ω), (D(Am))∗). We denote the

duality pairing between D(Am)∗ and D(Am) by (D(Am))∗ < ·, · >D(Am). We note

that (D(Am))∗ < ϕ, ψ >D(Am)= (ϕ,ψ) if ϕ,ψ ∈ L2(Ω) (e.g., Brezis [9]).

Moreover we introduce a Banach space

V2m = {g ∈ H2m(0, T0; L2(∂Ω)); ∂j
t g(·, T0) = 0, j = 0, 1, 2, · · · , 2m− 1}

with the norm ‖g‖V2m = ‖∂2m
t g‖L2(0,T0;L2(∂Ω)). Identifying a Banach space L2(0, T0; L2(∂Ω))

with its dual, we have the dense and continuous embedding

V2m ⊂ L2(0, T0;L2(∂Ω)) ⊂ V ∗
2m.

We denote the duality pairing between g ∈ V ∗
2m and h ∈ V2m by < g, h > and we

note that < g, h >= (g, h)L2(0,T0;L2(∂Ω)) for g, h ∈ L2(0, T0; L2(∂Ω)).

Then

Lemma 2.1.

(Am)∗a = Ama, a ∈ C∞0 (Ω).

Proof. By the definition of the dual operator (Am)∗, we have

(D(Am))∗ < (Am)∗a, f >D(Am)= (a,Amf), f ∈ D(Am).
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Since a ∈ C∞0 (Ω) ⊂ D(Am), we see for example by using (2.3), that

(D(Am))∗ < (Am)∗a, f >D(Am)= (Ama, f).

By f,Ama ∈ L2(Ω), we see that (Ama, f) =(D(Am))∗< Ama, f >D(Am), so that

(D(Am))∗ < (Am)∗a, f >D(Am)=(D(Am))∗< Ama, f >D(Am) for all f ∈ D(Am). The

proof of Lemma 2.1 is completed.

Next

Lemma 2.2.

‖a‖D(Am)∗ =




∞∑

j=1

∣∣∣∣∣
(a, ϕj)

λm
j

∣∣∣∣∣

2



1
2

, a ∈ L2(Ω).

Proof. Since Am : D(Am) −→ L2(Ω) is injective and surjective, and (Am)−1 ∈

B(L2(Ω),D(Am)), we see that ((Am)∗)−1 is injective and ((Am)∗)−1 ∈ B(D(Am)∗, L2(Ω))

(e.g., Yosida [41]). Hence for any a ∈ D(Am)∗, we have

(D(Am))∗ < a, f >D(Am)=(D(Am))∗< (Am)∗((Am)∗)−1a, f >D(Am)= (((Am)∗)−1a,Amf)

for f ∈ D(Am). Hence for a ∈ D(Am)∗, we have

‖a‖D(Am)∗ = sup
‖Amf‖=1

|(D(Am))∗ < a, f >D(Am) | = sup
‖Amf‖=1

|(((Am)∗)−1a,Amf)|

=‖((Am)∗)−1a‖ = ‖((Am)−1)∗a‖. (2.4)

Henceforth let a ∈ L2(Ω). We have (a, (Am)−1f) =(D(Am))∗< a, (Am)−1f) >D(Am)=

(((Am)−1)∗a, f). On the other hand,

(a,A−mf) =


a,

∞∑

j=1

(f, ϕj)
λm

j

ϕj


 =




∞∑

j=1

(a, ϕj)
λm

j

ϕj , f


 .

Hence

(((Am)−1)∗a, f) =




∞∑

j=1

(a, ϕj)
λm

j

ϕj , f


 , f ∈ L2(Ω),
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that is,

((Am)−1)∗a =
∞∑

j=1

(a, ϕj)
λm

j

ϕj

in L2(Ω) for any a ∈ L2(Ω). Hence

‖((Am)−1)∗a‖ =




∞∑

j=1

∣∣∣∣∣
(a, ϕj)

λm
j

∣∣∣∣∣

2



1
2

.

In view of (2.4), the proof of Lemma 2.2 is completed.

We set

H = {Ama; a ∈ C∞0 (Ω)}D(Am)∗
. (2.5)

Then

Lemma 2.3. H = D(Am)∗.

Proof. By Lemma 2.1, we have

H = {(Am)∗a; a ∈ C∞0 (Ω)}D(Am)∗
.

Since Am : D(Am) −→ L2(Ω) is injective and (Am)−1 ∈ B(L2(Ω),D(Am)), we

see that ((Am)∗)−1 ∈ B(D(Am)∗, L2(Ω)) and D(Am)∗ = (Am)∗L2(Ω). Hence it

suffices to prove

{(Am)∗a; a ∈ C∞0 (Ω)}D(Am)∗
= (Am)∗L2(Ω). (2.6)

Since C∞0 (Ω) is dense in L2(Ω), for any a ∈ L2(Ω), we can choose a sequence

am ∈ C∞0 (Ω), m ∈ N such that am −→ a in L2(Ω). By (Am)∗ ∈ B(L2(Ω),D(Am)∗),

we see that (Am)∗am −→ (Am)∗a in D(Am)∗. Hence (Am)∗a ∈ H.　 Therefore

(2.6) follows, and the proof of Lemma 2.3 is completed.

We consider 



∂2
t v(x, t) = −Av(x, t), x ∈ Ω, 0 < t < T0,

v(x, t) = 0, x ∈ ∂Ω, 0 < t < T0,

v(·, 0) = 0, ∂tv(·, 0) = v1 ∈ D(Am)∗.

(2.7)
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By the transposition method (e.g., Komornik [28], Lions and Magenes [34]), there

exists a unique solution v ∈ C1([0, T0];D(Am)∗) to (2.7) and by v(x, t) = v(v1)(x, t)

we denote the solution to (2.7). Then we have

Theorem 2.1. Let us assume (2.1). Then there exist constants C2, C3 > 0 such

that

C2‖v1‖D(Am)∗ ≤
∥∥∥∥

∂v(v1)
∂ν

∥∥∥∥
V ∗2m

≤ C3‖v1‖D(Am)∗

for all v1 ∈ D(Am)∗.

Proof. By the limit passage and Lemmata 2.1 and 2.3, it is sufficient to prove the

conclusion for v1 = (Am)∗a = Ama with a ∈ C∞0 (Ω). Then we have

∂v(v1)
∂ν

(x, t) =
∞∑

j=1

(v1, ϕj)
sin
√

λjt√
λj

∂ϕj

∂ν
(x), x ∈ ∂Ω, 0 < t < T0

(e.g., [28]). We note that the right hand side is convergent in L2(0, T0; L2(∂Ω)).

By the definition of the norm in V ∗
2m, we have

∥∥∥∥
∂v(v1)

∂ν

∥∥∥∥
V ∗2m

= sup
‖g‖V2m=1

∣∣∣∣
〈

g,
∂v(v1)

∂ν

〉∣∣∣∣ = sup
‖g‖V2m=1

∣∣∣∣∣
(

g,
∂v(v1)

∂ν

)

L2(0,T0;L2(∂Ω))

∣∣∣∣∣ .

Since ∂j
t g(·, T0) = 0, j = 0, 1, · · · , 2m− 1, we integrate by parts to obtain

(
g,

∂v(v1)
∂ν

)

L2(0,T0;L2(∂Ω))

=
(

∂2m
t g,

∫ t

0

(t− ξ)2m−1

(2m− 1)!
∂v(v1)

∂ν
(x, ξ)dξ

)

L2(0,T0;L2(∂Ω))

.

Hence

∥∥∥∥
∂v(v1)

∂ν

∥∥∥∥
V ∗2m

=
∥∥∥∥
∫ t

0

(t− ξ)2m−1

(2m− 1)!
∂v(v1)

∂ν
(x, ξ)dξ

∥∥∥∥
L2(0,T0;L2(∂Ω))

.
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On the other hand, by integration by parts, we have

∫ t

0

(t− ξ)2m−1

(2m− 1)!
∂v(v1)

∂ν
(x, ξ)dξ

=
t2m−1

(2m− 1)!

∞∑

j=1

(v1, ϕj)
λj

∂ϕj

∂ν
(x)−

∫ t

0

(ξ − t)2m−2

(2m− 1)!

∞∑

j=1

(v1, ϕj)
λj

cos
√

λjξ
∂ϕj

∂ν
(x)dξ

=
t2m−1

(2m− 1)!

∞∑

j=1

(v1, ϕj)
λj

∂ϕj

∂ν
(x) +

∫ t

0

(ξ − t)2m−2

(2m− 2)!

∞∑

j=1

(v1, ϕj)
λj

√
λj

sin
√

λjξ
∂ϕj

∂ν
(x)dξ

=
t2m−1

(2m− 1)!

∞∑

j=1

(v1, ϕj)
λj

∂ϕj

∂ν
(x)− t2m−3

(2m− 3)!

∞∑

j=1

(v1, ϕj)
λ2

j

∂ϕj

∂ν
(x)

+
∫ t

0

(ξ − t)2m−4

(2m− 4)!

∞∑

j=1

(v1, ϕj)
λ2

j

cos
√

λjξ
∂ϕj

∂ν
(x)dξ

= · · ·

=
m∑

k=1

(−1)k+1 t2m−(2k−1)

(2m− (2k − 1))!

∞∑

j=1

(v1, ϕj)
λk

j

∂ϕj

∂ν
(x)

+(−1)m
∞∑

j=1

(v1, ϕj)

λ
m+ 1

2
j

sin
√

λjx
∂ϕj

∂ν
(x).

Moreover, since v1 = Ama, for 1 ≤ k ≤ m we have (v1, λ
−k
j ϕj) = (v1, A

−kϕj) =

(Am−ka, ϕj) and

∞∑

j=1

(v1, ϕj)
λk

j

ϕj(x) =
∞∑

j=1

(Am−ka, ϕj)ϕj(x) = Am−ka.

Hence for 1 ≤ k ≤ m, we have

∞∑

j=1

(v1, ϕj)
λk

j

∂ϕj

∂ν
(x) =

∂

∂ν
(Am−ka) = 0

because Am−ka = 0 in Ω \ supp a. Hence

∫ t

0

(t− ξ)2m−1

(2m− 1)!
∂v(v1)

∂ν
(x, ξ)dξ = (−1)m

∞∑

j=1

(v1, ϕj)

λ
m+ 1

2
j

sin
√

λjx
∂ϕj

∂ν
(x).

Moreover

C ′2

∞∑

j=1

β2
j ≤

∥∥∥∥∥∥

∞∑

j=1

βj

sin
√

λjt√
λj

∂ϕj

∂ν

∥∥∥∥∥∥

2

L2(0,T0;L2(∂Ω))

≤ C ′3

∞∑

j=1

β2
j
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for all βj ∈ R, j ∈ N, under assumption (2.1), and the constants C ′2, C
′
3 can be

chosen uniformly in p ∈ U1 (e.g., Kazemi and Klibanov [22], Klibanov and Malinsky

[25], Komornik [28]). Consequently

C ′2

∞∑

j=1

∣∣∣∣∣
(v1, ϕj)

λm
j

∣∣∣∣∣

2

≤
∥∥∥∥∥∥

∞∑

j=1

(v1, ϕj)
λm

j

sin
√

λjt√
λj

∂ϕj

∂ν

∥∥∥∥∥∥

2

L2(0,T0;L2(∂Ω))

≤C ′3

∞∑

j=1

∣∣∣∣∣
(v1, ϕj)

λm
j

∣∣∣∣∣

2

.

By v1 = Ama ∈ L2(Ω), we can apply Lemma 2.2, so that the conclusion holds for

v1 = (Am)∗a with any a ∈ C∞0 (Ω).

We define an operator K from D(Am)∗ to V ∗
2m by

Kv1 =
∂v(v1)

∂ν
.

We set Λ = K∗. Then Theorem 2.1 implies that

K∗ : V2m −→ D(Am)

is surjective and bounded (e.g., Brezis [9]). By the open mapping theorem, Λ ≡

(K∗)−1 : D(Am) −→ V2m is bounded.

On the other hand, for g ∈ V2m, there exists a unique solution w = w(g) ∈

C2m([0, T ];L2(Ω)) to




∂2
t w(x, t) = ∆w(x, t) + p(x)w(x, t), x ∈ Ω, 0 < t < T0,

w(x, t) = g(x, t), x ∈ ∂Ω, 0 < t < T0,

w(·, 0) = ∂tw(x, 0) = 0, x ∈ Ω.

(2.8)

The unique existence of w(g) is proved by taking t-derivatives of w and a usual a

priori estimate (e.g., [28], [33]), and we can further prove more regularity by the

transposition method (e.g., Lions and Magenes [34]), but we will omit the details.

In terms of the Hilbert Uniqueness Method (e.g., [28], [33]), noting (2.2), we have
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Theorem 2.2. Let us assume (2.1). Then, for any a ∈ D(Am), we have

w(Λ(a))(x, T0) = a(x), x ∈ Ω, ‖Λ(a)‖V2m
≤ C4‖a‖H2m(Ω). (2.9)

The constant C4 > 0 is taken uniformly in p ∈ U1.

This is the exact controllability for the displacement in a state space D(Am) ⊂

H2m(Ω). We conclude the section with Lemmata 2.4 and 2.5 which assert estimates

for solutions to hyperbolic equations.

Lemma 2.4. Let u = u(p, g, a, b) satisfy




∂2
t u(x, t) = ∆u(x, t) + p(x)u(x, t), x ∈ Ω, 0 < t < T,

u(x, 0) = a(x), ∂tu(x, 0) = b(x), x ∈ Ω,

u(x, t) = g(x, t), x ∈ ∂Ω, 0 < t < T.

Let ‖p‖C2m−2,1(Ω) ≤ M , and let a ∈ H2m(Ω), b ∈ H2m−1(Ω). Then for any

subdomains Ω′ and Ω′′ such that Ω′′ ⊂ Ω′ ⊂ Ω′ ⊂ Ω, there exist constants C5 =

C5(M, T, Ω′′) > 0 and C6 = C6(M, T, Ω′,Ω′′) > 0 such that

‖∂j
t u‖C([0,T ];H1(Ω′)) ≤ C5(‖a‖H2m(Ω) + ‖b‖H2m−1(Ω) + ‖g‖H2m(0,T ;L2(∂Ω))),

j = 0, 1, · · · 2m− 2 (2.10)

and

‖u‖C([0,T ];H2m(Ω′′)) ≤ C6(‖a‖H2m(Ω) + ‖b‖H2m−1(Ω) + ‖g‖H2m(0,T ;L2(∂Ω))). (2.11)

We can prove the lemma by taking t-derivatives of u, and will give the proof in

Appendix II for completeness.

Lemma 2.5. Let

T > 2 inf
x0∈Rn\(Ω\ω)

sup
x∈Ω

|x− x0|
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and let




∂2
t w(x, t) = ∆w(x, t) + p(x)w(x, t) + f(x, t), x ∈ Ω, 0 < t < T,

w(x, t) = 0, x ∈ ∂Ω, 0 < t < T,

where ‖p‖L∞(Ω) ≤ M . Then there exists a constant C7 = C7(M, Ω, T ) > 0 such

that

‖w(·, 0)‖H1(Ω) + ‖∂tw(·, 0)‖L2(Ω) ≤ C7(‖f‖L2(0,T ;L2(Ω)) + ‖w‖H1(0,T ;L2(ω))).

This is an observability inequality (e.g., , Kazemi and Klibanov [22], Klibanov

and Malinsky [25], Klibanov and Timonov [26], Komornik [28], Lions [33]) and for

completeness we will prove it in Appendix III.

§3. Proof of Theorem.

First Step.

Since U is relatively compact in C2m−1(Ω), for any m ∈ N we can chooose N =

N(m) ∈ N and pm
j ∈ U , 1 ≤ j ≤ N such that for any p ∈ U , there exists j0 ∈

{1, 2, ..., N} satisfying

‖p− pm
j0‖C2m−1(Ω) ≤

1
m

. (3.1)

We arbitrarily fix

a0 ∈ H2m
0 (Ω), |a0(x)| ≥ 1, x ∈ Ω \ ω. (3.2)

We set a`(x) = `Ma0(x) for ` ∈ N. Then we have

‖a`‖H2m(Ω) ≤ C0(`,M). (3.3)

Here ` ∈ N is a constant which we will choose later.

By Theorem 2.2, we can choose g1, ..., gN ∈ V2m such that

u(pm
j , gj , 0, 0)(x, T0) = a`(x), x ∈ Ω, 1 ≤ j ≤ N. (3.4)
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Remark. Boundary controls g1, ..., gN are suitable inputs guaranteeing the Lip-

schitz stability in our inverse problem. Let Λ(p) : D(Am) −→ V2m be a mapping

defined by Theorem 2.2 with the coefficient p. Then we can represent

(g1, ..., gN ) = (Λ(pm
1 )(a`), ..., Λ(pm

N )(a`)).

Here, for simplicity, we choose controls gj which steer the system with the zero

initial condition to a`(x) = u(x, T0). We need not be restricted to the zero initial

condition. By the proof, we can see that for the Lipschitz stability in our inverse

problem, we can choose hj , 1 ≤ j ≤ N , such that

u(pm
j , hj , αj , βj)(x, T0) = a`(x), x ∈ Ω

for any (αj , βj) ∈ V, 1 ≤ j ≤ N . Such boundary controls hj can exists in terms of

Theorem 2.1 (also see [28], [33]). Thus such choices of boundary inputs are quite

generous.

Here and henceforth C, Cj denote generic positive constants which are dependent

on Ω,U ,V but independent of `, m,M and choices of p ∈ U , while C(M, `), Cj(M, `)

denote generic positive constants which are dependent on M, `, Ω,U ,V but inde-

pendent of m and choices of p ∈ U . We can understand that C(M), Cj(M) denote

a constant which are independent of ` but depend on M, Ω,U ,V.

Then by Theorem 2.2 and the second assumption in (1.5), we have

‖gj‖V2m ≤ C1(M)‖a`‖H2m(Ω) ≤ C2(M, `). (3.5)

Let p ∈ U be given arbitrarily. Then

min
1≤j≤N

‖u(p, gj , a, b)− a`‖C([0,T0];H2m(Ω))

≤C3(M) +
C4(M, `)

m
for all (a, b) ∈ V. (3.6)
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In fact, by (3.1), there exists j0 ∈ {1, ..., N} such that ‖p − pm
j0
‖C2m−1(Ω) ≤ 1

m .

Setting v = u(p, gj0 , a, b)− u(pm
j0

, gj0 , 0, 0), we have





∂2
t v(x, t) = ∆v(x, t) + p(x)v(x, t) + (p(x)− pm

j0(x))u(pm
j0 , gj0 , 0, 0)(x, t), x ∈ Ω, 0 < t < T,

v(x, 0) = a(x), ∂tv(x, 0) = b(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, 0 < t < T.

Then, by Lions and Magenes [34], we have

‖v‖C([0,T ];H2m(Ω))

≤C5(M)(‖a‖H2m(Ω) + ‖b‖H2m−1(Ω) + ‖(p− pm
j0)u(pm

j0 , gj0 , 0, 0)‖C([0,T ];H2m−1(Ω)))

≤C ′5(M)(‖a‖H2m(Ω) + ‖b‖H2m−1(Ω)) + C ′5(M)‖p− pm
j0‖C2m−1(Ω)‖u(pm

j0 , gj0 , 0, 0)‖C([0,T ];H2m−1(Ω))

≤C6(M) +
C7(M, `)

m
.

Here we used Lemma 2.4, ‖a‖H2m(Ω), ‖b‖H2m−1(Ω) ≤ M and (3.5). Since u(pm
j0

, gj0 , 0, 0)(x, T0) =

a`(x), x ∈ Ω by (3.4), the proof of (3.6) is completed.

By m > n
4 and the Sobolev embedding, we have H2m(Ω) ⊂ C(Ω). In terms of

(3.2) and (3.6), we see that for any p ∈ U , there exists j0 ∈ {1, ..., N} such that

|u(p, gj0 , a, b)(x, T0)| ≥ `M − C8(M)− C9(M, `)
m

, x ∈ Ω \ ω, (a, b) ∈ V.

We choose ` ∈ N suffciently large so that (`−1)M
2 ≥ C8(M). For this `, we choose

m ∈ N large such that (`−1)M
2 ≥ C9(M,`)

m .

Thus: there exist g1, ..., gN ∈ V2m such that for any p ∈ U , we can choose

j0 ∈ {1, ..., N} satisfying

|u(p, gj0 , a, b)(x, T0)| ≥
(

(`− 1)M
2

− C8(M)
)

+
(

(`− 1)M
2

− C9(M, `)
m

)
+ M

≥M, x ∈ Ω \ ω, (a, b) ∈ V. (3.7)
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Second Step.

We will complete the proof of Theorem.

We choose a subdomain Ω′ ⊂ Ω such that Ω \ ω ⊂ Ω′ and Ω′ ⊂ Ω. Then, by

Lemma 2.4 and hyperbolic equation (1.1), we have

‖u(p, gj , aj , bj)‖C([0,T ];H2m(Ω′))∩C2([0,T ];H2m−2(Ω′)) ≤ C10(M),

‖u(p̃, gj , ãj , b̃j)‖C([0,T ];H2m(Ω′))∩C2([0,T ];H2m−2(Ω′)) ≤ C10(M)

for (p, aj , bj), (p̃, ãj , b̃j) ∈ U ×V. Setting t1 = min{T −T0, T0}, we see by (1.5) that

t1 > infx′∈Rn\(Ω\ω) supx∈Ω |x−x′|. Therefore we can Theorem 0 in a domain Ω′ by

replacing ω by ω ∩Ω′. Then, in terms of (3.7), assumption (1.4) is satisfied. Hence

Theorem 0 yields that we can choose j ∈ {1, ..., N} such that

‖p− p̃‖L2(Ω\ω) ≤ C11

(
‖u(p, gj , aj , bj)− u(p̃, gj , ãj , b̃j)‖C3([0,T ];L2(ω))

+‖u(p, gj , aj , bj)− u(p̃, gj , ãj , b̃j)‖C1([0,T ];H2(ω))

+‖(u(p, gj , aj , bj)− u(p̃, gj , ãj , b̃j))(·, T0)‖H2(Ω)

+‖(∂tu(p, gj , aj , bj)− ∂tu(p̃, gj , ãj , b̃j))(·, T0)‖H2(Ω)

)

≡C11Dj . (3.8)

Since gj depends on p, p̃ ∈ U , we take the sum
∑N

j=1 Dj , so that ‖p − p̃‖L2(Ω) ≤

C11

∑N
j=1 Dj .

Next, setting vj = u(p, gj , aj , bj)− u(p̃, gj , ãj , b̃j), we have



∂2
t vj(x, t) = ∆vj(x, t) + p(x)vj(x, t) + (p(x)− p̃(x))u(p̃, gj , ãj , b̃j)(x, t), x ∈ Ω, 0 < t < T,

vj(x, 0) = aj(x)− ãj(x), ∂tvj(x, 0) = bj(x)− b̃j(x), x ∈ Ω,

vj(x, t) = 0, x ∈ ∂Ω, 0 < t < T.

In terms of (1.5), applying Lemma 2.5, we obtain

‖aj − ãj‖H1(Ω) + ‖bj − b̃j‖L2(Ω)

≤C12(‖(p− p̃)u(p̃, gj , ãj , b̃j)‖L2(0,T ;L2(Ω)) + ‖vj‖H1(0,T ;L2(ω))).
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Since p− p̃ = 0 in ω, in terms of m > n
4 and the Sobolev embedding, we have

‖(p− p̃)u(p̃, gj , ãj , b̃j)‖L2(0,T ;L2(Ω)) ≤ ‖(p− p̃)u(p̃, gj , ãj , b̃j)‖L2(0,T ;L2(Ω′))

≤‖p− p̃‖L2(Ω′)‖u(p̃, gj , ãj , b̃j)‖L2(0,T ;L∞(Ω′))

≤C13‖p− p̃‖L2(Ω′)‖u(p̃, gj , ãj , b̃j)‖L2(0,T ;H2m(Ω′)).

Hence (3.8) and Lemma 2.4 yield

‖(p− p̃)u(p̃, gj , ãj , b̃j)‖L2(0,T ;L2(Ω)) ≤ C14

N∑

j=1

Dj .

Therefore

‖aj − ãj‖H1(Ω) + ‖bj − b̃j‖L2(Ω) ≤ C14Dj .

Thus, with (3.8), the proof of Theorem is completed.

Appendix I. Proof of Theorem 0.

We prove Theorem 0 by modifying the argument in Imanuvilov and Yamamoto

[16], [17]. We show a key Carleman estimate (Imanuvilov [14]). We set

Pv = ∂2
t v −∆v − p(x)v, x ∈ Ω, t > 0.

Let x0 ∈ Rn \ (Ω \ ω) satisfy infx′∈Rn\(Ω\ω) supx∈Ω |x − x′| = supx∈Ω |x − x0|.

For this x0 and β ∈ (0, 1), we define functions ψ = ψ(x, t) and ϕ = ϕ(x, t) by

ψ(x, t) = |x− x0|2 − β|t− T0|2, ϕ(x, t) = eλψ(x,t)

with a parameter λ > 0. Let 0 < t1 < T0.

Lemma I.1. Let ‖p‖L∞(Ω) ≤ M and let us assume that t1 > supx∈Ω |x − x0|.

Then there exists λ0 > 0 such that for all λ > λ0 there exist s0 = s0(λ) > 0 and a

constant C = C(s0, λ0,M, Ω, T0, t1, x0, ω) > 0 such that
∫ T0+t1

T0−t1

∫

Ω

(s|∇x,ty|2 + s3y2)e2sϕdxdt

≤C

∫ T0+t1

T0−t1

∫

Ω

|Py|2e2sϕdxdt + C

∫ T0+t1

T0−t1

∫

ω

(s|∂ty|2 + s3y2)e2sϕdxdt
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for all s > s0(λ), provided that





Py ∈ L2(Ω× (T0 − t1, T0 + t1)), y ∈ H1(Ω× (T0 − t1, T0 + t1)),

y = 0 on ∂Ω× (T0 − t1, T0 + t1),

y(·, T0 − t1) = ∂ty(·, T0 − t1) = y(·, T0 + t1) = ∂ty(·, T0 + t1) = 0 in Ω.

(I.1)

Case 1.

u(p, g, a, b) = u(p̃, g̃, ã, b̃) on ∂Ω× (T0 − t1, T0 + t1).

We set Q = Ω× (T0 − t1, T0 + t1). Moreover setting ỹ = u(p, g, a, b)− u(p̃, g, ã, b̃),

R(x, t) = u(p̃, g, ã, b̃) and f = p− p̃, we have





∂2
t ỹ(x, t) = ∆ỹ + p(x)ỹ(x, t) + f(x)R(x, t), (x, t) ∈ Q,

ỹ(x, t) = 0, x ∈ ∂Ω, T0 − t1 < t < T0 + t1.

Here ỹ, R ∈ ⋂2
j=0 Cj([T0 − t1, T0 + t1];H3−j(Ω)). We set

y = ỹ − (a− ã)− (b− b̃)(t− T0) in Q.

Then




∂2
t y(x, t) = ∆y + p(x)y(x, t) + f(x)R(x, t) + (∆ + p(x))((a− ã) + (b− b̃)(t− T0)) in Q,

y(x, t) = 0, x ∈ ∂Ω, T0 − t1 < t < T0 + t1,

y(x, T0) = ∂ty(x, T0) = 0, x ∈ Ω.

(I.2)

By an a priori estimate (e.g., Lions and Magenes [34]) and ‖R‖∩2
j=0Cj([T0−t1,T0+t1];H3−j(Ω)) ≤

C1M , by using

∆y = ∂2
t y − py − fR− (∆ + p(x))((a− ã) + (b− b̃)(t− T0)) in Q,

there exists a constant C2 > 0 such that

‖y‖H2(Q) ≤ C2(‖f‖L2(Ω) + ‖a− ã‖H2(Ω) + ‖b− b̃‖H2(Ω)). (I.3)
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By the assumption on t1, there exists β ∈ (0, 1) such that

β >
supx∈Ω |x− x0|2

t21
.

Therefore, by the definitions of ψ and ϕ, we have

ϕ(x, T0) ≥ 1, x ∈ Ω,

ϕ(x, T0 − t1) = ϕ(x, T0 + t1) < 1, x ∈ Ω. (I.4)

Therefore for given ε > 0, we can choose a sufficiently small δ = δ(ε) > 0 such that

ϕ(x, t) ≥ 1− ε, (x, t) ∈ Ω× [T0 − δ, T0 + δ] (I.5)

and

ϕ(x, t) ≤ 1− 2ε, (x, t) ∈ Ω× ([T0− t1, T0− t1 +2δ]∪ [T0 + t1− 2δ, T0 + t1]). (I.6)

In order to apply Lemma I.1, we have to introduce a cut-off function χ ∈ C∞0 (R)

satisfying 0 ≤ χ ≤ 1 and

χ(t) =
{

0 t ∈ [T0 − t1, T0 − t1 + δ] ∪ [T0 + t1 − δ, T0 + t1]
1 t ∈ [T0 − t1 + 2δ, T0 + t1 − 2δ].

(I.7)

Henceforth C > 0 denotes generic constants which are dependent on s0, λ, M , Ω,

T , x0, ω, β, χ and δ, ε, but independent of s > s0.

We set

z = (∂ty)esϕχ ∈ C([T0 − t1, T0 + t1];H1(Ω)) ∩ C1([T0 − t1, T0 + t1];L2(Ω)). (I.8)

By (I.2), the function z satisfies the equation

Pz = (f∂tR)esϕχ + esϕχ(∆ + p)(b− b̃) + s(−2∇xϕ · ∇xz + 2(∂tϕ)∂tz + (¤ϕ)z)

−s2(|∂tϕ|2 − |∇xϕ|2)z + 2esϕ(∂2
t y)∂tχ + (∂ty)esϕ∂2

t χ in Q. (I.9)
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In fact, we have

∂iz = (∂i∂ty)esϕχ + (∂ty)s(∂iϕ)esϕχ = (∂i∂ty)esϕχ + s(∂iϕ)z. (I.10)

Hence

(∂i∂ty)esϕχ = ∂iz − s(∂iϕ)z. (I.11)

Moreover, the differentiation of (I.10) yields

∂2
i z = (∂2

i ∂ty)esϕχ + s(∂iϕ)esϕ(∂i∂ty)χ + (sz∂2
i ϕ + s(∂iϕ)∂iz)

=(∂2
i ∂ty)esϕχ + s∂iϕ(∂iz − sz∂iϕ) + (s(∂2

i ϕ)z + s(∂iϕ)∂iz).

At the second equality, we used also (I.11). Hence

∆z = (∆∂ty)esϕχ + 2s∇ϕ · ∇z + (s∆ϕ− s2|∇ϕ|2)z.

We have

∂tz = (∂2
t y)esϕχ + (∂ty)esϕ∂tχ + s(∂tϕ)z.

Similarly we have

∂2
t z = (∂3

t y)esϕχ + {(∂2
t y)esϕχ}s∂tϕ + 2esϕ(∂2

t y)∂tχ

+s(∂ty)(∂tϕ)esϕ∂tχ + (∂ty)esϕ∂2
t χ + s(∂2

t ϕ)z + s(∂tϕ)(∂tz)

=(∂3
t y)esϕχ + {∂tz − (∂ty)esϕ∂tχ− s(∂tϕ)z}s∂tϕ + 2esϕ(∂2

t y)∂tχ

+s(∂ty)(∂tϕ)esϕ∂tχ + (∂ty)esϕ∂2
t χ + s(∂2

t ϕ)z + s(∂tϕ)(∂tz)

=(∂3
t y)esϕχ + 2s(∂tϕ)∂tz + (s∂2

t ϕ− s2|∂tϕ|2)z

+2esϕ(∂2
t y)∂tχ + (∂ty)esϕ∂2

t χ.

Therefore, by (I.2), we obtain (I.9).



24 R. CIPOLLATI AND M. YAMAMOTO

In particular, setting w = χ(∂ty) and s = 0 in (I.9), we have

Pw = χf∂tR + χ(∆ + p)(b− b̃) + 2(∂2
t y)∂tχ + (∂2

t χ)∂ty in Q. (I.12)

Now we will apply Lemma I.1 to equation (I.12). By (I.2), (I.3), (I.7) and (I.12),

we see that Pw ∈ L2(Q), w ∈ H1(Q), and w = 0 on ∂Ω× (T0 − t1, T0 + t1). Hence

by Lemma I.1, we obtain

∫

Q

(s3w2 + s|∇x,tw|2)e2sϕdxdt ≤ C3

∫

Q

χ2|f∂tR|2e2sϕdxdt

+C3

∫

Q

χ2|(∆ + p)(b− b̃)|2e2sϕdxdt + C3

∫

Q

{(∂tχ)∂2
t y + (∂2

t χ)∂ty}2e2sϕdxdt + C3D(y).
(I.13)

Here and henceforth we set

D(y) ≡
∫ T0+t1

T0−t1

∫

ω

(s3w2 + s|∂tw|2)e2sϕdxdt

≤C3s
3

∫ T0+t1

T0−t1

∫

ω

(|∂ty|2 + |∂2
t y|2)e2sϕdxdt.

By (I.3), (I.6) and (I.7), we have

∣∣∣∣
∫

Q

{(∂tχ)∂2
t y + (∂2

t χ)∂ty}2e2sϕdxdt

∣∣∣∣

=

∣∣∣∣∣

(∫ T0−t1+2δ

T0−t1+δ

+
∫ T0+t1−δ

T0+t1−2δ

)∫

Ω

{(∂tχ)∂2
t y + (∂2

t χ)∂ty}2e2sϕdxdt

∣∣∣∣∣
≤C4e

2s(1−2ε)‖y‖2H2(Q)

≤C4e
2s(1−2ε)(‖f‖2L2(Ω) + ‖a− ã‖2H2(Ω) + ‖b− b̃‖2H2(Ω)). (I.14)

Noting that z = wesϕ, we have

s3z2 = s3w2e2sϕ,

s|∇x,tz|2 = s|∇x,tw + s(∇x,tϕ)w|2e2sϕ ≤ C4(s|∇x,tw|2e2sϕ + s3w2e2sϕ).
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Therefore by (I.13) and (I.14), we obtain

∫

Q

(s3z2 + s|∇x,tz|2)dxdt ≤ C5

∫

Q

χ2|f |2e2sϕdxdt

+C5e
C5s(‖a− ã‖2H2(Ω) + ‖b− b̃‖2H2(Ω)) + C5e

2s(1−2ε)‖f‖2L2(Ω) + C5D(y).
(I.15)

We multiply (I.9) by ∂tz and integrate it over Ω× (T0 − t1, T0):

∫ T0

T0−t1

∫

Ω

(Pz)∂tzdxdt =
∫ T0

T0−t1

∫

Ω

f(∂tR)esϕχ∂tzdxdt

+
∫ T0

T0−t1

∫

Ω

((∆ + p)(b− b̃))esϕχ∂tzdxdt

+
∫ T0

T0−t1

∫

Ω

{s(−2∇xϕ · (∂tz)∇xz + 2(∂tϕ)|∂tz|2 + (¤ϕ)z∂tz)

−s2(|∂tϕ|2 − |∇xϕ|2)z∂tz}dxdt +
∫ T0

T0−t1

∫

Ω

2esϕ(∂2
t y)(∂tχ)∂tzdxdt

+
∫ T0

T0−t1

∫

Ω

(∂ty)esϕ(∂2
t χ)∂tzdxdt. (I.16)

We denote the left and the right hand sides of (I.16) respectively by I1 and I2.

By the boundary conditions and the conditions at t = T0 in (I.2), noting that

z(·, T0 − t1) = ∂tz(·, T0 − t1) = 0, we integrate by parts, so that we have

I1 =
∫ T0

T0−t1

∫

Ω

1
2

(
∂|∂tz|2

∂t
+

∂|∇z|2
∂t

− p
∂|z|2
∂t

)
dxdt

−
∫

∂Ω

∫ T0

T0−t1

∂

∂ν
((∂ty)esϕχ)∂t((∂ty)esϕχ)dtdσ

≥1
2

∫

Ω

|∂tz(x, T0)|2dx.

On the other hand, by (I.2) and (I.8), we see that

∂tz(x, T0) = ((∂2
t y)esϕχ)(x, T0) + (s(∂tϕ)esϕ(∂ty)χ)(x, T0) + ((∂ty)esϕ∂tχ)(x, T0)

=(∆y + py + fR + (∆ + p)(a− ã))(x, T0)esϕ(x,T0)χ(T0)

=(ãf + (∆ + p)(a− ã))(x)esϕ(x,T0), x ∈ Ω.

Therefore

I1 ≥ 1
2

∫

Ω

|ã(x)|2|f(x)|2e2sϕ(x,T0)dx− C6e
2sC6‖a− ã‖2H2(Ω). (I.17)
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Furthermore by the Cauchy-Schwarz inequality, we have
∫ T0

T0−t1

∫

Ω

2esϕ(∂2
t y)(∂tχ)∂tzdxdt

≤
∫ T0

T0−t1

∫

Ω

|∂tz|2dxdt +
∫ T0

T0−t1

∫

Ω

e2sϕ|(∂2
t y)∂tχ|2dxdt,

and again the Cauchy-Schwarz inequality yields

I2 ≤ C6

∫ T0

T0−t1

∫

Ω

|f |2e2sϕχ2dxdt + C6e
C6s‖b− b̃‖2H2(Ω) + C6

∫ T0

T0−t1

∫

Ω

(s|∇x,tz|2 + s3|z|2)dxdt

+C6

∫ T0

T0−t1

∫

Ω

|∂ty|2e2sϕ|∂2
t χ|2dxdt +

∫ T0

T0−t1

∫

Ω

e2sϕ|(∂2
t y)∂tχ|2dxdt.

By noting (I.3), (I.7) and the fact that ∂ty ∈ L2(Ω × (T0 − t1, T0)), application of

(I.15) yields

I2 ≤ C7

∫

Q

|f |2χ2e2sϕdxdt + C7e
C7s(‖b− b̃‖2H2(Ω) + ‖a− ã‖2H2(Ω))

+C7e
2s(1−2ε)‖f‖2L2(Ω) + C7D(y)

+C7

(∫ T0−t1+2δ

T0−t1+δ

+
∫ T0+t1−δ

T0+t1−2δ

)∫

Ω

(|∂ty|2 + |∇x,t∂ty|2)e2sϕdxdt

≤C8

∫

Q

|f |2e2sϕdtdx + C8e
C8s(‖b− b̃‖2H2(Ω) + ‖a− ã‖2H2(Ω))

+C8e
2s(1−2ε)‖f‖2L2(Ω) + C8D(y). (I.18)

Consequently (1.4), (I.17) and (I.18) imply
∫

Ω

|f(x)|2e2sϕ(x,T0)dx

≤C9

∫

Q

|f |2e2sϕdtdx + C9e
C9s(‖b− b̃‖2H2(Ω) + ‖a− ã‖2H2(Ω))

+C9e
2s(1−2ε)‖f‖2L2(Ω) + C9D(y).

On the other hand,
∫

Q

|f(x)|2e2sϕdtdx =
∫

Ω

(∫ T0+t1

T0−t1

|f(x)|2 exp
(
2seλψ(x,t)

)
dt

)
dx

≤
∫

Ω

(∫ T0+t1

T0−t1

exp
(
2seλ|x−x0|2(e−λβt2 − 1)

)
dt

)
|f(x)|2e2sϕ(x,T0)dx

≤
∫

Ω

(∫ T0+t1

T0−t1

exp
(
2s(e−λβt2 − 1)

)
dt

)
|f(x)|2e2sϕ(x,T0)dx.
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The Lebesgue theorem implies

∫ T0+t1

T0−t1

exp
(
2s(e−λβt2 − 1)

)
dt = o(1)

as s −→∞, so that

∫

Q

|f(x)|2e2sϕdtdx = o(1)
∫

Ω

|f(x)|2e2sϕ(x,T0)dx.

Therefore

∫

Ω

|f(x)|2e2sϕ(x,T0)dx

≤o(1)
∫

Ω

|f(x)|2e2sϕ(x,T0)dx + C9e
C9s(‖b− b̃‖2H2(Ω) + ‖a− ã‖2H2(Ω))

+C9e
2s(1−2ε)‖f‖2L2(Ω) + C9D(y)

as s −→∞. Hence

(1− o(1)) e2s

∫

Ω

|f(x)|2dx

≤C10e
2s(1−2ε)‖f‖2L2(Ω) + C10e

C10s(‖b− b̃‖2H2(Ω) + ‖a− ã‖2H2(Ω)) + C10D(y).

By choosing s > 0 sufficiently large and fixing, the proof of Theorem 0 is completed

in Case 1.

Case 2.

u(p, g, a, b) 6= u(p̃, g̃, ã, b̃) on ∂Ω× (T0 − t1, T0 + t1).

By the Sobolev extension theorem, we can choose h ∈ C3([T0− t1, T0 + t1]; L2(Ω))∩

C1([T0 − t1, T0 + t1];H2(Ω)) such that

‖h‖C3([T0−t1,T0+t1];L2(Ω)) + ‖h‖C1([T0−t1,T0+t1];H2(Ω))

≤C11(‖u(p, g, a, b)− u(p̃, g̃, ã, b̃)‖C3([T0−t1,T0+t1];L2(ω))

+‖u(p, g, a, b)− u(p̃, g̃, ã, b̃)‖C1([T0−t1,T0+t1];H2(ω)) (I.19)
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and

h = u(p, g, a, b)− u(p̃, g̃, ã, b̃) in ω × (T0 − t1, T0 + t1).

We set

y1 = u(p, g, a, b)− u(p̃, g̃, ã, b̃)− h in Q.

Since ∂ω ⊃ ∂Ω, we have





∂2
t y1(x, t) = ∆y1 + p(x)y(x, t) + f(x)R(x, t) + (∂2

t −∆− p)h in Q,

y1(x, t) = 0, x ∈ ∂Ω, T0 − t1 < t < T0 + t1,

y1(x, T0) = a− ã− h(·, T0),

∂ty1(x, T0) = b− b̃− (∂th)(·, T0).

In terms of (I.19), we repeat the argument in Case 1, so that the proof of Theorem

0 is completed.

Appendix II. Proof of Lemma 2.4.

We set uj = ∂j
t u. By 2m-times taking t-derivatives, we have





∂2
t u1(x, t) = ∆u1(x, t) + p(x)u1(x, t), x ∈ Ω, 0 < t < T,

u1(x, 0) = b(x), ∂tu1(x, 0) = (∆ + p)a(x), x ∈ Ω,

u1(x, t) = ∂tg(x, t), x ∈ ∂Ω, 0 < t < T,





∂2
t u2(x, t) = ∆u2(x, t) + p(x)u2(x, t), x ∈ Ω, 0 < t < T,

u2(x, 0) = (∆ + p)a(x), ∂tu2(x, 0) = (∆ + p)b(x), x ∈ Ω,

u2(x, t) = ∂2
t g(x, t), x ∈ ∂Ω, 0 < t < T,

· · ·




∂2
t u2m−1(x, t) = ∆u2m−1(x, t) + p(x)u2m−1(x, t), x ∈ Ω, 0 < t < T,

u2m−1(x, 0) = (∆ + p)m−1b(x), ∂tu2m−1(x, 0) = (∆ + p)ma(x), x ∈ Ω,

u2m−1(x, t) = ∂2m−1
t g(x, t), x ∈ ∂Ω, 0 < t < T,
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and




∂2
t u2m(x, t) = ∆u2m(x, t) + p(x)u2m(x, t), x ∈ Ω, 0 < t < T,

u2m(x, 0) = (∆ + p)ma(x), ∂tu2m(x, 0) = (∆ + p)mb(x), x ∈ Ω,

u2m(x, t) = ∂2m
t g(x, t), x ∈ ∂Ω, 0 < t < T.

By a ∈ H2m(Ω), b ∈ H2m−1(Ω) and g ∈ H2m(0, T ; L2(∂Ω)), the transposition

method (e.g., [28], [34]) yields that ∂j
t u ∈ C([0, T ];L2(Ω)) and

‖∂j
t u‖C([0,T ];L2(Ω)) ≤ C1(‖a‖H2m(Ω)+‖b‖H2m−1(Ω)+‖g‖H2m(0,T ;L2(∂Ω))), j = 0, 1, · · · , 2m.

(II.1)

On the other hand, we have

∆uj(x, t) + p(x)uj(x, t) = ∂2
t uj(x, t), x ∈ Ω, j = 0, 1, · · · , 2m− 2 (II.2)

for any t ∈ [0, T ]. Similarly to p.414 in [33], we can choose µ ∈ W 1,∞
0 (Ω) such that

0 ≤ µ ≤ 1 in Ω, µ = 1 in Ω′ and

|∇µ(x)|2
µ(x)

≤ C2(Ω′), x ∈ Ω. (II.3)

Multiplying (II.2) with µuj , integrating in x and using the Green formula, we have

∫

Ω

µ|∇uj(x, t)|2dx

=−
∫

Ω

uj(x, t)∇uj(x, t) · ∇µ(x)dx +
∫

Ω

pu2
jµdx−

∫

Ω

µuj∂
2
t ujdx.

Therefore the Cauchy-Schwarz inequality yields

∫

Ω

µ|∇uj(x, t)|2dx ≤
∫

Ω

√
µ|∇uj | |∇µ|√

µ
|uj |dx + C3

∫

Ω

|uj |2dx +
∫

Ω

|uj ||∂2
t uj |dx

≤1
2

∫

Ω

µ|∇uj |2dx +
1
2

∫

Ω

|∇µ|2
µ

|uj |2dx

+C3

∫

Ω

|uj |2dx +
1
2

∫

Ω

(|uj |2 + |∂2
t uj |2)dx.
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By (II.3), we have

1
2

∫

Ω′
|∇∂j

t u(x, t)|2dx ≤ 1
2

∫

Ω

|∇∂j
t u(x, t)|2dx

≤C4

∫

Ω

|∂j
t u|2dx + C4

∫

Ω

|∂j+2
t u|2dx, j = 0, ..., 2m− 2.

Thus the proof of (2.10) is completed.

We choose subdomains Ω1, ..., Ωm−1 such that Ω′′ ⊂ Ωm−1 ⊂ Ωm−1 ⊂ Ωm−2 ⊂

Ωm−2 ⊂ .... ⊂ Ω1 ⊂ Ω1 ⊂ Ω′. First (∆ + p)∂2m−2
t u(·, t) = ∂2m

t u(·, t) in Ω. By

(2.10) and (II.1), applying the interior regularity (e.g., Theorem 8.8 (pp.183-184)

in [12]), we have

‖∂2m−2
t u(·, t)‖H2(Ω1) ≤ C5(‖a‖H2m(Ω) + ‖b‖H2m−1(Ω) + ‖g‖H2m(0,T ;L2(∂Ω))). (II.4)

Next (∆ + p)∂2m−4
t u(·, t) = ∂2m−2

t u(·, t) in Ω. In terms of (II.4) and (2.10), we

apply again the interior regularity (e.g., Theorem 8.10 (p.186) in [12]), so that

‖∂2m−4
t u(·, t)‖H4(Ω2) ≤ C6(‖a‖H2m(Ω) + ‖b‖H2m−1(Ω) + ‖g‖H2m(0,T ;L2(∂Ω))).

Continuing the argument, we complete the proof of (2.11).

Appendix III. Proof of Lemma 2.5.

First, by a usual energy estimate, we can prove that there exists a constant C1 > 0

such that

E(t) ≤ C1E(t′) + C1‖f‖2L2(0,T ;L2(Ω)) for any t, t′ ∈ [0, T ]. (III.1)

Henceforth we set Q1 = Ω× (0, T ), T = 2t0 and

E(t) =
∫

Ω

(|∇w(x, t)|2 + |∂tw(x, t)|2)dx,

and Cj > 0 denote generic constants which are dependent on M, Ω, T . In terms of

(III.1), it is sufficient to prove that

‖w (·, t0)‖H1(Ω) + ‖∂tw(·, t0)‖L2(Ω) ≤ C(‖f‖L2(0,T ;L2(Ω)) + ‖w‖H1(0,T ;L2(ω))).
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We choose x0 ∈ Rn \ (Ω \ ω) such that

sup
x∈Ω

|x− x0| = inf
x′∈Rn\(Ω\ω)

sup
x∈Ω

|x− x′|.

By t0 > supx∈Ω |x− x0|, we can choose β ∈ (0, 1) such that

β >
supx∈Ω |x− x0|2

t20
.

Let

ψ(x, t) = |x− x0|2 − β|t− t0|2, ϕ(x, t) = eλψ(x,t).

Then ϕ(x, t0) ≥ 1 and ϕ(x, 0) = ϕ(x, 2t0) < 1 for x ∈ Ω. Therefore for given ε > 0,

we can choose a sufficiently small δ = δ(ε) > 0 such that





ϕ(x, t) ≥ 1− ε, (x, t) ∈ Ω× [t0 − δ, t0 + δ],

ϕ(x, t) ≤ 1− 2ε, (x, t) ∈ Ω× ([0, 2δ] ∪ [2t0 − 2δ, 2t0]).
(III.2)

We take χ1 ∈ C∞0 (R) satisfying 0 ≤ χ1 ≤ 1 and

χ1(t) =
{

0 t ∈ [0, δ] ∪ [2t0 − δ, 2t0]
1 t ∈ [2δ, 2t0 − 2δ].

(III.3)

We set w1 = χ1w. Then





∂2
t w1(x, t) = ∆w1 + p(x)w1(x, t) + χ1f(x, t) + 2(∂tχ1)∂tw + w∂2

t χ1 in Q1,

w1(x, t) = 0, x ∈ ∂Ω, 0 < t < 2t0,

w1(·, 0) = w1(·, 2t0) = ∂tw1(·, 0) = ∂tw1(·, 2t0) = 0 in Ω.

Here, setting T = t0, we apply Lemma I.1 in Appendix I to w1, so that

∫

Q1

(s|∇x,tw1|2 + s3|w1|2)e2sϕdxdt ≤ C2

∫

Q1

|χ1f |2e2sϕdxdt

+C2

∫

Q1

(|(∂tχ1)∂tw|2 + |w1∂
2
t χ1|2)e2sϕdxdt

+C2s
3

∫ 2t0

0

∫

ω

(|∂tw1|2 + |w1|2)e2sϕdxdt
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for all large s > 0. The second term on the right hand side does not vanish only if

∂tχ1, ∂
2
t χ1 6= 0, so that in terms of (III.2) and (III.3), it is bounded by

C2

∫ 2t0

0

E(t)dte2s(1−2ε).

Hence, by (III.1), we have

∫

Ω

∫ t0+δ

t0−δ

(|∇x,tw|2 + |w|2)e2sϕdxdt ≤ C3e
C3s‖f‖2L2(Q1)

+C3e
2s(1−2ε)(E(t0) + ‖f‖2L2(Q1)

) + C3e
C3s‖w‖2H1(0,T ;L2(ω)).

By (III.2) we see that

e2s(1−ε)

∫ t0+δ

t0−δ

E(t)dt ≤ C4e
C4s‖f‖2L2(Q1)

+C4e
2s(1−2ε)(E(t0) + ‖f‖2L2(Q1)

) + C4e
C4s‖w‖2H1(0,T0;L2(ω)).

By (III.1) the left hand side is greater than or equal to

e2s(1−ε)(E(t0)− ‖f‖2L2(Q1)
)2δ.

Noting the Poincaré inequality and choosing s > 0 sufficiently large and fixing, we

complete the proof of Lemma 2.5.
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