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Abstract

We study the optimal execution problem in the presence of market impact where the
security price follows a geometric Ornstein Uhlenbeck process which has mean reverting
property and show that an optimal strategy is a mixture of initial/terminal block liqui-
dation and intermediate gradual liquidation. Mean reverting property is strongly related
to the resilience of market impact, as in several papers which have studied optimal ex-
ecution in a limit order book (LOB) model, such as Alfonsi et al. [1] and Obizhaeva
and Wang [13]. It is interesting that despite the fact that the model in this paper is
different from the LOB model, the form of our optimal strategy is quite similar to those
of [1] and [13]. Our results in this paper is also placed as a representative and significant
example of the (generalized) framework of Kato [11] where market impact causes gradual
liquidation.

Keywords : Optimal execution, Market impact, Liquidity problems, Ornstein Uhlen-
beck process, Gradual liquidation

1 Introduction

The basic framework of the optimal execution (liquidation) problem was established in
Bertsimas and Lo[5] and the theory of optimal execution has been developed by Almgren and
Chriss[4], He and Mamaysky[8], Huberman and Stanzl[10], Subramanian and Jarrow[16] and
many others. Such a problem often shows up in trading operations, when a trader tries to
execute a large amount of a security. In these cases, he/she should be careful about liquidity
problems and especially should never neglect the market impact (MI) which plays an important
role. MI means the effect that a trader’s investment behavior affects on security prices.

To study MI for a trader’s execution policy, we consider a case where a trader sells his/her
shares of the security by predicting a decrease in price of the security. In a frictionless market,
a (risk neutral) trader should sell all the shares as soon as possible, so his/her optimal strategy
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is the block liquidation at the initial time. However, in the real market a trader takes time to
liquidate. So it is significant to find out what factors cause such gradual liquidation.

Convexity of MI is one of the reasons to dissuade a trader from block liquidation. As shown
in examples in Kato[11], when a trader is risk neutral and the market is Black Scholes type, a
quadratic MI function causes gradual liquidation whereas a block liquidation is optimal when
MI is linear. However, many traders in the real market execute their sales by taking time in
spite of recognizing that MI is not always convex. Risk aversion of a trader’s utility function
also affects a trader’s execution policy motivating an incentive to take more time for trading.
Schied and Schöneborn[15] consider an optimization problem in relation with a risk averse
utility function and clarify the relation between the measure of risk aversion and the form of
optimal strategies.

Another important motive is that due to the effect of MI, security price may recover after
downward movement in price. In this paper, to consider the price recovery effect, we focus on
the case where the process of a security price has the mean reverting property, especially when
it follows a geometric Ornstein Uhlenbeck (OU) process. We adopt the framework of Kato[11]:
we first consider discrete time models of an optimal execution problem and then derive the
continuous time model as their limit. To treat the geometric OU process as a security price
process, we generalize the main results of Kato[11] mathematically. We explicitly solve the
optimization problem with linear MI and show that the optimal strategy is a mixture of
initial/terminal block liquidation and intermediate gradual liquidation. Our example in this
paper is also placed as a representative case where a gradual liquidation is necessary in the
framework of Kato[11] even if there is linear MI and the trader is risk neutral.

Our result is strongly related to studies of the limit order book (LOB) model. In the LOB
model, a trader’s selling decreases buy limit orders, thus expanding the bid ask spread tem-
porarily, and new buy limit orders appear, letting the bid ask spread shrinks as time passes.
The minimization problem of expected execution cost in a block-shaped LOB model with
exponential resilience of MI is studied in Obizhaeva and Wang[13]. A mathematical general-
ization of the results of Obizhaeva and Wang[13] is given in Alfonsi et al.[1] and Predoiu et al.
[14]. Moreover, Makimoto and Sugihara[12] treat a model of optimal execution under stochas-
tic liquidity. It is interesting that despite the fact that the model in this paper is different
from the LOB model, the form of an optimal execution strategy in our model becomes quite
similar to the results in these papers. Indeed, when our security price process has no volatility,
the form of our optimal strategy coincides with those in Alfonsi et al.[1] and Obizhaeva and
Wang[13]: the speed of intermediate liquidation is constant. When the volatility is larger than
zero, the speed decreases as in Makimoto and Sugihara[12].

This paper is organized as follows. In Section 2, we review our model of optimization
problems and list our assumptions. In Section 3, we give some generalizations of the results
of Kato[11], in particular the convergence of the value functions. Section 4 is our main inter-
est. We introduce the optimization problem in the geometric OU price process and solve it
explicitly. Section 5 gives a note on the positivity of an optimal strategy and the possibility
of price manipulation in our framework. Section 6 summarizes our studies. Section 7 gives
the proofs of our results.
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2 The Model

Our model is the same as in Kato[11] except for some technical assumptions. Let (Ω,F ,
(Ft)0≤t≤1, P ) be a filtered space which satisfies the usual condition (that is, (Ft)t is right
continuous and F0 contains all P -null sets) and let (Bt)0≤t≤T be a standard one dimensional
(Ft)t-Brownian motion.

First we consider the discrete time model with time interval 1/n. We assume that trans-
action times are only at 0, 1/n, . . . , (n− 1)/n for n ∈ N = {1, 2, 3, . . .}. We suppose that there
are only two assets in the market: cash and a security. The price of cash is always equal
to 1. We consider a single trader who has an endowment of Φ0 > 0 shares of the security.
This trader executes the shares Φ0 over a time interval [0, 1], but his/her sales affect the price
of the security. For l = 0, . . . , n, we denote by Snl the price of the security at time l/n and
Xn
l = log Snl . Let s0 > 0 be the initial price (i.e., Sn0 = s0) and Xn

0 = log s0. If a trader sells the
amount ψnl at time l/n, the log price changes to Xn

l − gn(ψ
n
l ), where gn : [0,∞) −→ [0,∞) is

a nondecreasing and continuously differentiable function which satisfies gn(0) = 0, and he/she
gets the amount of cash ψnl S

n
l exp(−gn(ψnl )) as the proceeds of his/her execution. After the

trade at time l/n, Xn
l+1 and Snl+1 are given by

Xn
l+1 = Y

( l + 1

n
;
l

n
,Xn

l − gn(ψ
n
l )
)
, Snl+1 = exp(Xn

l+1), (2.1)

where Y (t; r, x) is a solution of the following stochastic differential equation (SDE){
dY (t; r, x) = σ(Y (t; r, x))dBt + b(Y (t; r, x))dt, t ≥ r,
Y (r; r, x) = x

(2.2)

and b, σ : R −→ R are Lipschitz continuous functions. We assume that the functions b, σ, b̂
and σ̂ are linear growth, where σ̂(s) = sσ(log s), b̂(s) = s{b(log s) + σ(log s)2/2}. We notice
that b and σ are assumed to be bounded in Kato[11], so the model in this paper is a slight
generalization of Kato[11]. In our model, we remark that there is a unique solution of (2.2)
for each r ≥ 0 and x ∈ R.

At the end of the time interval [0, 1], the trader has the amount of cash W n
n , where

W n
l+1 = W n

l + ψnl S
n
l exp(−gn(ψnl )) (2.3)

for l = 0, . . . , n− 1 and W n
0 = 0. We define the space of a trader’s execution strategies An

k(φ)
as the set of (ψnl )

k−1
l=0 such that ψnl is Fl/n-measurable, ψnl ≥ 0 for each l = 0, . . . , k − 1, and

k−1∑
l=0

ψnl ≤ φ.

The investor’s problem is to choose an admissible trading strategy to maximize the ex-
pected utility E[u(W n

n , φ
n
n, S

n
n)], where u ∈ C is his/her utility function and C is the set of

nondecreasing continuous functions on D = R× [0,Φ0]× [0,∞) which have polynomial growth
rate.

For k = 1, . . . , n, (w,φ, s) ∈ D and u ∈ C, we define a (discrete time) value function
V n
k (w,φ, s;u) by

V n
k (w,φ, s;u) = sup

(ψn
l )k−1

l=0 ∈An
k (φ)

E[u(W n
k , φ

n
k , S

n
k )]
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subject to (2.1) and (2.3) for l = 0, . . . , k − 1 and (W n
0 , φ

n
0 , S

n
0 ) = (w,φ, s). (For s = 0, we

set Snl ≡ 0.) For k = 0, we put V n
0 (w,φ, s;u) = u(w,φ, s). Then our problem is the same as

V n
n (0,Φ0, s0;u). We consider the limit of the value function V n

k (w,φ, s;u) as n→ ∞.
Let h : [0,∞) −→ [0,∞) be a nondecreasing continuous function. We introduce the

following condition.

[A] lim
n→∞

sup
ψ∈[0,Φ0]

∣∣∣ d
dψ

gn(ψ) − h(nψ)
∣∣∣ = 0.

Let g(ζ) =

∫ ζ

0

h(ζ ′)dζ ′ for ζ ∈ [0,∞). The function g(ζ) means an MI function in the

continuous time model. For t ∈ [0, 1] and φ ∈ [0,Φ0] we denote by At(φ) the set of (Fr)0≤r≤t-

progressively measurable process (ζr)0≤r≤t such that ζr ≥ 0 for each r ∈ [0, t],

∫ t

0

ζrdr ≤

φ almost surely and sup
r,ω

ζr(ω) < ∞. For t ∈ [0, 1], (w,φ, s) ∈ D and u ∈ C, we define

Vt(w,φ, s;u) by

Vt(w,φ, s;u) = sup
(ζr)r∈At(φ)

E[u(Wt, φt, St)]

subject to

dWr = ζrSrdr, dφr = −ζrdr, dSr = σ̂(Sr)dBr + b̂(Sr)dr − g(ζr)Srdr

and (W0, φ0, S0) = (w,φ, s). When s > 0, we obviously see that the process the log price of
the security Xr = log Sr satisfies

dXr = σ(Xr)dBr + b(Xr) − g(ζr)dr. (2.4)

3 Derivation of Continuous Time Model

Following results are similar to the ones in Kato[11].

Theorem 1. Assume [A]. For each (w,φ, s) ∈ D, t ∈ [0, 1] and u ∈ C,

lim
n→∞

V n
[nt](w,φ, s;u) = Vt(w,φ, s;u), (3.1)

where [nt] is the greatest integer less than or equal to nt.

Here we make the further assumption

[B] E[ sup
0≤t≤1

exp(Y (t; 0, x))] ≤ Cex for some C > 0.

Theorem 2. Assume [B]. For u ∈ C, the function Vt(w,φ, s;u) is continuous in (t, w, φ, s) ∈
(0, 1] ×D. Moreover, if h(∞) < ∞, then Vt(w,φ, s;u) converges to Ju(w,φ, s) uniformly on
any compact subset of D as t ↓ 0, where

Ju(w,φ, s) =


sup
ψ∈[0,φ]

u
(
w +

1 − e−h(∞)ψ

h(∞)
s, φ− ψ, se−h(∞)ψ

)
(h(∞) > 0)

sup
ψ∈[0,φ]

u(w + ψs, φ− ψ, s) (h(∞) = 0).
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Theorem 3. Assume [B]. For each r, t ∈ [0, 1] with t + r ≤ 1, (w,φ, s) ∈ D and u ∈ C it
holds that Qt+ru(w,φ, s) = QtQru(w,φ, s).

Next we consider a sell out condition, which is referred in Section 4 in Kato[11]. We define
some spaces of admissible strategies with the sell out condition as

An,SO
k (φ) =

{
(ψnl )l ∈ An

k(φ) ;
k−1∑
l=0

ψnl = φ

}
,

ASO
t (φ) =

{
(ζr)r ∈ At(φ) ;

∫ t

0

ζrdr = φ

}
.

Now we define value functions with the sell out condition by

V n,SO
k (w,φ, s;U) = sup

(ψn
l )l∈An,SO

k (φ)

E[U(W n
k )],

V SO
t (w,φ, s;U) = sup

(ζr)r∈ASO
t (φ)

E[U(Wt)]

for a continuous, nondecreasing and polynomial growth function U : R −→ R. By Theorem
1, 2, and similar arguments as in Kato[11], we can show the following.

Theorem 4. It follows that V n,SO
[nt] (w,φ, s;U) −→ V SO

t (w,φ, s;U) = Vt(w,φ, s;u) as n→ ∞,

where u(w,φ, s) = U(w).

Under the assumptions of this paper, we also obtain all the lemmas in Section 7.1 of
Kato[11], except Lemma 1 and Lemma 4. Instead, we have the following lemmas.

Lemma 1. For each m ∈ N there is a constant C > 0 depending only on b, σ and m such that

E[Ẑ(s)m] ≤ C(1 + sm), where Ẑ(s) = sup
0≤t≤1

Z(t; 0, s).

Lemma 2. Let t ∈ [0, 1], φ ≥ 0, x ∈ R, (ζr)0≤r≤t ∈ At(φ) and let (Xr)0≤r≤t be given by (2.4)
with X0 = x. Then there is a constant C > 0 depending only on b and σ such that

E
[

sup
r∈[r0,r1]

∣∣∣Xr −Xr0 +

∫ r

r0

g(ζv)dv
∣∣∣4]

≤ C(r1 − r0)
2{1 + (r1 − r0)

3

∫ r1

r0

E[g(ζv)
4]dv} (3.2)

for each 0 ≤ r0 ≤ r1 ≤ t.

Unlike the case where b is bounded, the right hand side of (3.2) depends on (ζr)r. However,
this makes no essential problem for proving similar results to Kato[11], except the continuity
of the continuous time value function at t = 0 when h(∞) = ∞. Thus we can complete the
proofs of Theorems 1–3 similarly to Kato[11].
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4 Example: Geometric OU Process

In this section we consider an example which is our main interest in this paper. Let β, σ ≥ 0
and F ∈ R. We set b(x) = β(F − x) and σ(x) ≡ σ. In this case the solution Y of (2.2) is
called an Ornstein Uhlenbeck process and we can write the explicit form of the log price (Xr)r
as

Xr = e−βrx+ (1 − e−βr)F − e−βr
∫ r

0

eβvg(ζv)dv + e−βr
∫ r

0

eβvdBv.

We notice that the condition [B] is fulfilled.
Then we consider the case where MI is linear and the trader is risk neutral, that is,

g(ζ) = αζ for some α > 0 and u(w,φ, s) = uRN(w,φ, s) = w. For brevity we set y = σ2/(4β)
and z = log s − F . We assume z > 2y(≥ 0) so that the security price goes down to the
fundamental value eF as time passes. Note that the trader in a fully liquid market should sell
all the securities at the initial time i.e., the optimal strategy is an initial block liquidation. In
fact, if φ is small enough, the trader’s optimal policy is almost the same.

Theorem 5. If φ ≤ (z − 2y)/α, then it holds that

Vt(w,φ, s;uRN) = w +
1 − e−αφ

α
s. (4.1)

The form of (4.1) is the same as in Theorem 8 of Kato[11]. The trader’s (nearly) optimal
strategy is given by ζ̂I,δr = φ1[0,δ](r)/δ with δ → 0. We call such a strategy an “almost block
liquidation” at the initial time.

When φ is not so small, the assertion of the above theorem is not always true. The trader’s
selling accelerates the speed of decrease of the security price, and a quick liquidation is not
always appropriate when we consider the effect of MI. Moreover, if the trader’s execution
makes the price go under eF transitorily, the price will recover to eF by delaying the sale. This
gives a trader an incentive to liquidate gradually. Our purpose in the rest of this section is to
derive a (nearly) optimal execution strategy explicitly.

Let P (x) = e−αx(1−αx). Since the function P is strictly decreasing on (−∞, 2/α], we can
define its inverse function P−1 : [−e−2,∞) −→ (−∞, 2/α]. Moreover we define the function
H(λ) = Ht,φ(λ) on [0,∞) by

H(λ) = α exp

(
αβ

∫ t

0

P−1
(
exp(−e−2βry)λ/α

)
dr − αφ+ z − y

)
− λ,

We assume the following condition

φ >
max{z, 1 + β}

α
. (4.2)

This condition means that the amount of the trader’s security holdings is large enough. We
see that H is nonincreasing on [0,∞) and (4.2) implies

H
(
αe−y

)
< 0 < H(0).

Then the equation H(λ) = 0 has the unique solution λ∗ = λ∗(t, φ) ∈
(
0, αe−y

)
. The next

theorem is the main result in this section.
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Theorem 6. Let t ∈ (0, 1], (w,φ, s) ∈ D and assume (4.2). Then

Vt(w,φ, s;uRN) = w +
s

α

(
1 − exp

(
−αφ+ αβ

∫ t

0

ξ∗rdr

))
+β

∫ t

0

ξ∗r exp
(
F − αξ∗r + (1 + e−2βry)

)
dr, (4.3)

where ξ∗r = P−1(exp(−e−2βry)λ∗/α).

We can construct a nearly optimal strategy as follows (with δ ↓ 0):

ζ̂δr =
p∗

δ
1[0,δ](r) + ζ∗r +

q∗

δ
1[t−δ,t](r), (4.4)

where p∗ = ξ∗0 + (z − 2y)/α and

ζ∗r = βξ∗r +
2βλ∗e−2βry exp(αξ∗r − e−2βry)

α2(αξ∗r − 2)
+

2βy

α
e−2βr

= βξ∗r +
2βye−2βr

α(2 − αξ∗r )
,

q∗ = φ− β

∫ t

0

ξ∗rdr − ξ∗t −
z

α
+
y

α
(1 + e−2βt).

Here the second equality of the definition of ζ∗r comes from P (ξ∗r ) = exp(−e−2βry)×λ∗/α. By
the inequalities (4.2), z ≥ 2y, and 0 ≤ ξ∗r ≤ ξ∗0 ≤ 1/α, we see that p∗, ζ∗r and q∗ are all positive.

The strategy (ζ̂δr )r consists of three terms. The first term in the right hand side of (4.4)
corresponds to “initial (almost) block liquidation.” The trader should sell p∗ shares of a
security at the initial time by dividing infinitely to avoid a decrease in the proceeds. The
second term means “gradual liquidation.” The trader executes the selling gradually until the
time horizon. The speed of his/her execution becomes slower as time passes. Then the trader
completes liquidation by selling the rest of the shares by “terminal (almost) block liquidation”
as the final third term. So the nearly optimal strategy is a mixture of both block liquidation
and gradual liquidation, and especially we point out that the gradual liquidation is necessary
in this case. Figure 1 expresses the image of an optimal strategy of the trader. Using these
notations, we can rewrite the value function (4.3) as the sum of an initial cash amount and
proceeds of initial/intermediate/terminal liquidation:

Vt(w,φ, s;uRN)

= w +
1 − e−αp

∗

α
s+ s

∫ t

0

e−αη
∗
r (dη∗r + βξ∗rdr) +

1 − e−αq
∗

α
se−αη

∗
t , (4.5)

where η∗t = ξ∗t − (1 + e−2βt)y/α + z/α.
Here we consider the special case of σ = 0 for a while. In this case the form of the value

function and its nearly optimal strategy becomes simple and we can weaken the assumption
(4.2) to φ > z/α. We define the function C(p) = Ct,φ(p), x ∈ R, by

Ct,φ(p) = eαp−zHt,φ(αP (xp− z/α))/α

= exp(α(tβ + 1)p− αφ− tβz) + αp− z − 1.
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Almost block liquidation

Gradual liquidation
(not constant speed)

Figure 1: The form of a nearly optimal strategy (ζδr )r (the upper graph) and the corresponding
process of the amount of the security holdings (the lower graph) when σ > 0. Horizontal axis
is the time r.

Since C(p) is strictly increasing and C(z/α) < 0 < C ((φ− z/α)/(1 + βt)), the equation
C(p) = 0 has a unique solution p∗ = p∗(t, φ) ∈ (φ − z/α, (φ − z/α)/(1 + βt)). We have the
following.

Corollary 1. Let t ∈ (0, 1], (w,φ, s) ∈ D and assume φ > z/α. Then it holds that

Vt(w,φ, s;uRN) = w +
1 − e−α(p∗+q∗)

α
s+ tse−αp

∗
ζ∗, (4.6)

where ζ∗ = ζ∗(t, φ) and q∗ = q∗(t, φ) are given by

ζ∗ = β(p∗ − z/α), q∗ = φ− p∗ − tζ∗.

We see easily that p∗, ζ∗, q∗ > 0. A nearly optimal strategy is

ζδr =
p∗

δ
1[0,δ](r) + tζ∗ +

q∗

δ
1[t−δ,t](r).

In this case we also decompose a nearly optimal strategy into three parts: initial (almost)
block liquidation, gradual liquidation, and terminal (almost) block liquidation. Moreover the
speed of the gradual liquidation ζ∗ is constant. The image of their form is in Figure 2. In
fact, the security price is equal to se−αp

∗
and is also constant on (δ, 1 − δ).

This result is quite similar to Alfonsi et al.[1] and Obizhaeva and Wang[13], despite the
fact that there is a little difference between their models and ours. We consider the geometric
OU process for a security price. On the other hand Alfonsi et al.[1] and Obizhaeva and
Wang[13] assumed that the process of a security price follows arithmetic Brownian motion
(or a martingale) and there is exponential (or some more general shape of) resilience for MI
in LOB model. The relation between the mean reverting property of an OU process and the
resilience of MI causes the similarity of results.

5 A Note on Price Manipulation

In a viable execution model, the absence of price manipulation should be guaranteed and
an optimal strategy should always be nonnegative (i.e., a selling strategy should not include

8



Almost block liquidation

Gradual liquidation
(constant speed)

Figure 2: The forms of a nearly optimal strategy (ζδr )r (the upper graph) and the corresponding
process of the amount of the security holdings (the lower graph) when σ = 0. Horizontal axis
is the time r.

purchasing.) The conditions for viability in a LOB model are studied in Alfonsi and Schied[2],
Alfonsi et al.[3], Gatheral[6], Gatheral et al.[7], Huberman and Stanzl[9] and others.

In this section we extend the definition of admissible strategies of our model to permit
purchasing and consider the possibility of a price manipulation strategy. We consider the
following optimization problem

V ex
t (w,φ, s;uRN) = sup

(ζr)r∈Aex
t (φ)

E[Wt], (5.1)

where Aex
t (φ) is the set of “real valued” progressively measurable processes (ζr)r such that∫ t

0

ζrdr ≤ φ. We note that this extended value function is not always derived from corre-

sponding discrete time value functions, since our convergence theorem (Theorem 1) is based
on the assumption that an execution strategy takes nonnegative values.

In fact, the assumption (4.2) is needed only to guarantee p∗, ζ∗r , q
∗ > 0 and the proof of

Theorem 6 itself also works without (4.2). Let (ζ̂δr )r be given by (4.4) and let (Ŵ δ
r )r be the

corresponding process of the cash amount. The proof of Theorem 6 in Section 7.2 implies that

V ex
t (w,φ, s;uRN) ≥ lim

δ→0
E[Ŵ δ

t ] = lim sup
n→∞

V n,ex
[nt] (w,φ, s;uRN),

where V n,ex
[nt] (w,φ, s;uRN) is defined similarly to V ex

t (w,φ, s;uRN). Then we have the following.

Theorem 7. Assume z ≥ 2y. Then for each φ ∈ R the function V ex
t (w,φ, s;uRN) is not less

than the right hand side of (4.5).

We remark that the equation H(λ) = 0 has the unique solution

λ∗ ∈
(

0, αe−yP

(
αφ− z

α(1 + βt)

))
(5.2)

even if φ ≤ z/α. In this case p∗, ζ∗r and q∗ are not always positive.
As a special case of (5.1), we consider the value function V ex

t (0, 0, s;uRN). Following Hu-
berman and Stanzl[9], we call an admissible strategy (ζr)r ∈ Aex

t (0) a round trip and we define
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a price manipulation strategy as a round trip such that the corresponding expected profit at
the time horizon is positive. The following theorem indicates that we can construct a price
manipulation strategy when the initial security price s is much larger than the fundamental
value eF .

Theorem 8. For large enough z there is a price manipulation strategy.

Proof. The equation H(λ∗) = 0 implies

exp

(
αβ

∫ t

0

ξ∗rdr

)
= ey−zλ∗/α.

Then, using Theorem 7 and the relations (5.2) and ξ∗r ≤ 1/α, we get

V ex
t (0, 0, s;uRN) ≥ lim

δ→0
E[Ŵ δ

t ]

=
s

α

{
1 − (1 + βt)ey−zλ∗/α + βey−z

∫ t

0

exp(e−2βry − αξ∗r )dr

}
>
s

α
L(z), (5.3)

where

L(z) = 1 − (1 + βt+ z) exp

(
− βtz

1 + βt

)
+ βte−z−1.

Since lim
z→∞

L(z) = 1, the right hand side of (5.3) is not less than zero. Then we see that (ζ̂δr )r

is a price manipulation strategy for small enough δ. �

In a LOB model, the possibility of price manipulation is varied by small difference among
the frameworks of the models. In Alfonsi and Schied[2], there is no price manipulation strategy
in both linear and nonlinear MI and exponential resilience, but the result of Gatheral[6] asserts
that price manipulation is possible under exponential resilience unless the MI function is
linear. Theorem 8 implies the possibility of price manipulation in our framework, although
the function (5.1) is only a formal generalization of our continuous time value function.

6 Concluding Remarks

In this paper we gave a tiny generalization of the results of Kato[11] and we solved the
optimal execution problem in the case where a security price follows a geometric Ornstein Uh-
lenbeck process. This case is important in the sense that a security price has a mean reverting
property. We showed that a (nearly) optimal strategy is the mixture of initial/terminal block
liquidation and intermediate gradual liquidation when the initial amount of the security hold-
ings is large. When the volatility is equal to zero, our result has the same form as the ones
in Alfonsi et al.[1] and Obizhaeva and Wang[13]. In this case a trader should sell at the same
speed until the time horizon. When the volatility is positive, the speed of gradual liquidation
is not constant and the form of our optimal strategy is similar to the one in Makimoto and
Sugihara[12].

Our example gives us a case where MI causes gradual liquidation. In the real market a
trader sells his/her shares of a security gradually to avoid an MI cost because he/she expects
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a recovery of the price. As noted in Section 1, examples in Kato[11] also suggest that strictly
convex MI causes a gradual liquidation. Convexity (or nonlinearity) and a price recovery effect
are both important factors in the construction of an MI model.

In Section 5, we considered the optimization problem when the trader is permitted to buy
the security and we showed the possibility of price manipulation. It is important to construct
a viable market model of execution, and it is intended, in future work, to find out conditions
for the nonexistence of price manipulation. To make the arguments in Section 5 strict, we
need to derive the corresponding convergence theorem such as Theorem 1 and this is another
remaining task.

7 Appendix

7.1 Proof of Theorem 5

It is easy to see that Vt(w,φ, s;uRN) = w + eF+yf(t) holds, where

f(t) = sup
(ζr)r∈Adet

t (φ)

f̃((ζr)r), (7.1)

f̃((ζr)r) =

∫ t

0

ζr exp

(
e−βrz − e−2βry − αe−βr

∫ r

0

eβvζvdv

)
dr.

So it suffices to consider the maximization problem (7.1).
By a straightforward calculation, we get

f(t) ≥ lim
δ→0

f̃((ζ̂I,δr )r) =
1 − e−αφ

α
ez−y.

Moreover, for any (ζr)r ∈ Adet
t (φ) we have

f̃((ζr)r) ≤
∫ t

0

ζr exp
(
e−βrz − e−2βry − αe−βrηr

)
dr,

where ηr =

∫ r

0

ζvdv. From the relation z − 2y ≥ αφ ≥ αηr, we have

{z − y − αηr} − {e−βrz − e−2βry − αe−βrηr}
= (1 − e−βr)(z − (1 + e−βr)y − αηr) ≥ 0.

Thus

f̃((ζr)r) ≤
∫ t

0

exp(z − y − αηr)dηr ≤
1 − e−αφ

α
ez−y.

Then f(t) ≤ (1 − e−αφ)ez−y/α and this completes the proof of Theorem 5.

11



7.2 Proof of Theorem 6

In this section we present the proof of Theorem 6. It follows the outline of Alfonsi et al.
[1].

We fix w,φ, s for a while. For brevity we assume t = 1 until the end of this section. We
define a function fn(n) by

fn(n) =
1

α
sup

(ψn
k )k∈An,det

n (φ)

f̃n(ψn0 , . . . , ψ
n
n−1), (7.2)

where An,det
k (φ) is the set of admissible strategies in An

k(φ) which are deterministic (we also

define An,det,SO
k (φ) similarly),

f̃n(x)

= α
n−1∑
k=0

exp

(
cknz − c2kn y − α

k−1∑
l=0

ck−ln xl

)∫ (k+1)/n

k/n

nxk exp(−α(nr − k)xk)dr

=
n−1∑
k=0

exp

(
cknz − c2kn y − α

k−1∑
l=0

ck−ln xl

)
(1 − e−αxk), x = (x0, . . . , xn−1) ∈ Rn

and cn = e−β/n. Since the function f̃n(x0, . . . , xn−1) is nondecreasing in xn−1, we can replace
An,det
k (φ) in (7.2) with An,det,SO

k (φ). We have the following proposition.

Proposition 1. It holds that w + eF+yfn(n) −→ V1(w,φ, s;u) with n→ ∞.

Proof. Let f̂n(n) = e−F−y(V n
n (w,φ, s;u) − w). We easily have f̂n(n) ≤ fn(n) and Theorem 1

implies V1(w,φ, s;u) ≤ w + eF+y lim inf
n→∞

fn(n). On the other hand, by the same arguments as

in the proof of Proposition 2 of Kato[11], we can show the inequality w+ eF+y lim sup
n→∞

fn(n) ≤

V1(w,φ, s;u). Then we have the assertion. �

By the above proposition, we may solve the optimization problem fn(n) (and taking n→
∞) instead of calculating Vt(w,φ, s;uRN) (or f(t)) itself.

Let Ξn(φ) = {(x0, . . . , xn−1) ∈ Rn ; x0 + · · · + xn−1 = φ}. We remark that An,det,SO
k (φ) ⊂

Ξn(φ). We set Q̃n
k(x) =

l∑
m=0

cl−mn xm and Qn
l (x) = −zcln + yc2ln + αQ̃n

k(x).

Lemma 3. It holds that min
k=0,...,n−1

Qn
k(x) −→ −∞ as |x| → ∞ on Ξn(φ).

Proof. It suffices to show that min
k=0,...,n−1

Q̃n
k(x) −→ −∞. Take any M > 0. Let x ∈ Ξn(φ) be

such that min
k=0,...,n−1

Q̃n
k(x) ≥ −M . Then we have

xk + cnxk−1 + · · · + cknx0 ≥ −M, k = 0, . . . , n− 1. (7.3)

Substituting the equality xn−1 + · · ·+x0 = φ from (7.3) with k = n−1 and dividing by 1− cn,
we have

n−2∑
k=0

(
n−2−k∑
l=0

cln

)
xk ≤

M + φ

1 − cn
. (7.4)
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By (7.4) and (7.3) with k = n− 2, we have

n−3∑
k=0

(
n−3−k∑
l=0

cln

)
xk ≤

(
1

1 − cn
+ 1

)
(M + φ).

Calculating inductively, we get

k′∑
k=0

(
k′−k∑
l=0

cln

)
xk ≤

(
1

1 − cn
+ n− 2 − k′

)
(M + φ) ≤ an(M + φ) (7.5)

for k = 0, . . . , n− 2, where an = {(1 − cn)
−1 + n}.

By (7.3) and (7.5) with k = 0, we have −M ≤ x0 ≤ anM . Similarly, by (7.3) and (7.5)
with k = 1, we have −(1 + cnC0,n)M ≤ x1 ≤ (an + 1 + cn)M . By an inductive calculation
we have |xk| ≤ Cn(M + φ), k = 0, . . . , n − 2 and moreover the relation x ∈ Ξn(φ) implies
|xn−1| ≤ Cn(M + φ) for some positive constant Cn.

The above arguments tell us that “if a sequence (x(N))N ⊂ Ξn(φ) satisfies lim
N→∞

min
k

Q̃n
k(x

(N)) ̸= −∞, then (x(N))N is bounded,” which is the contrapositive of our assertion. �

Lemma 4. It holds that f̃n(x0, . . . , xn−1) −→ −∞ as |x| → ∞ on Ξn(φ).

Proof. Let An(p) = e−cnp+y − e−p, p ∈ R. Then we have

f̃n(x) =
n−1∑
k=0

(e−cnQ
n
k−1(x)+yc2k−1

n (1−cn) − e−Q
n
k (x))

≤ ez−y − e−Q
n
n−1(x) +

n−2∑
k=0

An(Q
n
k(x))

for any x = (x0, . . . , xn−1) ∈ Rn. We easily see that the function An has an upper bound CA,n.
Thus

f̃n(x) ≤

{
ez−y − exp(−min

k
Qn
k(x)) + CA,nn, if Qn

n−1(x) = min
k
Qn
k(x),

ez−y + An(min
k
Qn
k(x)) + CA,n(n− 1), otherwise.

Since lim
p→−∞

An(p) = −∞, we have the assertion by Lemma 3. �

Lemma 5. For each k = 0, . . . , n− 2, it holds that

∂

∂xk
f̃n(x0, . . . , xn−1)

= cn
∂

∂xk+1

f̃n(x0, . . . , xn−1) + α(1 − cn) exp(−c2kn y)F n
k

(
k∑
l=0

ck−ln xl − cknz/α

)
,

where

F n
k (x) =

exp(−αx) − cn exp(−αcnx− c2kn (c2n − 1)y)

1 − cn
.
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Proof. For brevity, set d(k)
n = cknz − c2kn y. A straightforward calculation gives

∂

∂xk
f̃n(x0, . . . , xn−1) = α exp

(
d(k)
n − α

k∑
l=0

ck−ln xl

)

−α
n−1∑

k′=k+1

ck
′−k
n exp

(
d(k′)
n − α

k′−1∑
l=0

ck
′−l
n xl

)
(1 − e−αxk′ ). (7.6)

Replacing k with k + 1, we get

∂

∂xk+1

f̃n(x0, . . . , xn−1) = α exp

(
d(k+1)
n − α

k+1∑
l=0

ck+1−l
n xl

)

−α
n−1∑

k′=k+2

ck
′−k−1
n exp

(
d(k′)
n − α

k′−1∑
l=0

ck
′−l
n xl

)
(1 − e−αxk′ )

= − 1

cn
α

n−1∑
k′=k+1

ck
′−k
n exp

(
d(k′)
n − α

k′−1∑
l=0

ck
′−l
n xl

)
(1 − e−αxk′ )

+α exp

(
d(k+1)
n − α

k∑
l=0

ck+1−l
n xl

)
. (7.7)

By (7.6) and (7.7), we get the assertion. �

We notice that F n
k is nonincreasing on En

k and we can define the (nonincreasing) inverse
function F n,−1

k on [0,∞), where

En
k =

(
−∞,− 1

α

(
c2kn (cn + 1)y +

log cn
1 − cn

)]
.

Now we define the function Hn(λ) by

Hn(λ) = α exp

(
α(1 − cn)

n−2∑
k=0

F n,−1
k (exp(c2kn y)λ/α) − αφ+ z − c2(n−1)

n y

)
− λ.

We consider the convergence of Hn. Let γnk (x), Rn
k(x) and Gn

k(x) be

γnk (x) = αx+ (1 + cn)c
2k
n y,

Rn
k(x) =

∫ 1

0

exp(v(1 − cn)γ
n
k (x))(1 − v)dv(γnk (x))2,

Gn
k(x) = βe−αx(αx+ (2 + cn)c

2k
n y − cnR

n
k(x)).

Moreover we define

I(q) =
d

dq
P−1(q) =

exp(αP−1(q))

α(αP−1(q) − 2)

and Jnk (q) = − exp(−2c2kn y)I(exp(−2c2kn y)q)G
n
k(F

n,−1
k (q)). Then we have the following.
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Lemma 6. It holds that

max
k=0,...,n−1

sup
x∈En

k ∩K

∣∣n(F n
k (x) − P (x) + 2e−αxc2kn y) −Gn

k(x)
∣∣ −→ 0, n→ ∞

for each compact set K ⊂ R.

Proof. For brevity we denote c̃n = 1 − cn. Using Taylor’s theorem, we get

F n
k (x) = e−αx

{
1 +

cn
c̃n

(1 − ec̃nγ
n
k (x))

}
= e−αx {1 − cn(γ

n
k (x) − c̃nR

n
k(x))}

= P (x) − 2e−αxc2kn y + c̃nG
n
k(x)/β.

Thus it holds that∣∣n(F n
k (x) − P (x) + 2e−αxc2kn y) −Gn

k(x)
∣∣ ≤ |nc̃n/β − 1| · |Gn

k(x)|.

Since we have nc̃n −→ β as n→ ∞ and

|Gn
k(x)| ≤ 2βe2α|x|+2y(α|x| + α2|x|2 + 3y + 4y2), (7.8)

we obtain the assertion. �

Let εnk(q) = F n,−1
k (q) − P−1(exp(−2c2kn y)q) + 2c2kn y/α.

Lemma 7. It holds that
(i) max

k=0,...,n−1
sup

0≤q≤M
|εnk(q)| −→ 0,

(ii) max
k=0,...,n−1

sup
0≤q≤M

|nεnk(q) − Jnk (q)| −→ 0

as n→ ∞ for each M > 0.

Proof. The assertion (i) is a direct consequence of the assertion (ii), so we will prove only (ii).
Take any q ∈ [0,M ] and let xnk = F n,−1

k (q). Since F n
k (x) is nondecreasing with respect to n

and k for each fixed x, we get xnk ∈ KM for any n and k, where

KM =

[
F 1,−1

0 (M),
β

α(1 − e−β)

]
.

Let R̃n
k(x) = F n

k (x) − P (x) + 2e−αxc2kn y. By the relation

P (xnk) − 2e−αx
n
k c2kn y + R̃n

k(x
n
k) = q,

we get

P (xnk + 2c2kn y/α) = exp(−2c2kn y)(q − R̃n
k(x

n
k)).

Since Lemma 6 implies

max
k=0,...,n−1

sup
x∈KM∩En

k

|R̃n
k(x)| −→ 0, n→ ∞, (7.9)
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we see that exp(−2c2kn y)(q−R̃n
k(x

n
k)) > −e−3/2/2 > −e−2 for large enough n and k = 0, . . . , n−

1, and we get

xnk − P−1(exp(−2c2kn y)q) + 2c2kn y/α

= P−1(exp(−2c2kn y)q) − P−1(exp(−2c2kn y)(q − R̃n
k(x

n
k))).

Since it follows that

−2e3/2/α ≤ I(q) < 0 <
d

dq
I(q) ≤ 12e3/α

for each x ≥ −e−3/2/2, we have

|n(xnk − P−1(exp(−2c2kn y)q) + 2c2kn y/α) − Jnk (q)|

≤
∣∣∣∣∫ 1

0

I(exp(−2c2kn y/α)(q − vR̃n
k(x

n
k)))dvnR̃

n
k(x

n
k) − I(exp(−2c2kn y)q))G

n
k(x

n
k)

∣∣∣∣
≤ 2e3/2

α
|nR̃n

k(x
n
k) −Gn

k(x
n
k)| +

12e3

α
|R̃n

k(x
n
k)| · |Gn

k(x
n
k)|.

By Lemma 6, (7.8), and (7.9), we obtain the assertion (ii). �

By Lemma 7, we get the following proposition.

Proposition 2. Hn converges to H uniformly on any compact set in R.

By Proposition 2 and the fact that Hn is strictly decreasing on [0,∞), we can take n large
enough so that there is a unique solution λ̂n of Hn(λ) = 0 on (0, 2λ∗). Moreover it follows
that λ̂n converges to λ∗ as n→ ∞.

We set ψ̂nk = Tk(λ̂n), k = 0, . . . , n− 1, where

T0(λ) = F n,−1
0 (exp(y)λ/α) + z/α,

Tk(λ) = F n,−1
k (exp(c2kn y)λ/α) − cnF

n,−1
k−1 (exp(c2(k−1)

n y)λ/α), k = 1, . . . , n− 2,

Tn−1(λ) = φ− (1 − cn)
n−3∑
k=0

F n,−1
k (exp(c2kn y)λ/α)

−F n,−1
n−2 (exp(c2(n−2)

n y)λ/α) − z/α.

Lemma 8. It holds that |ψ̂n0 − p∗| + max
k=1,...,n−2

|nψ̂nk − ζ∗k/n| + |ψ̂nn−1 − q∗| −→ 0 as n→ ∞.

Proof. By Lemma 7, we have

|ψ̂n0 − p∗| + max
k=1,...,n−2

|nψ̂nk − ζ∗k/n| + |ψ̂nn−1 − q∗|

≤ C

{
|n(1 − cn) − β| + εn + ε̃n

+ max
k=0,...,n−1

∣∣∣∣J (kn, exp(c2kn y)λ̂
n/α

)
− J

(
k − 1

n
, exp(c2(k−1)

n y)λ̂n/α

)∣∣∣∣
}
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for some positive constant C depending only on α, β, y, and z, where

J(r, q) = exp(−2e−βry)I(exp(−2e−βry)q)G(r, F̃ (r, q)),

G(r, x) = βe−αx(αx+ 3e−2βry − (αx+ 2e−2βry)2/2),

F̃ (r, q) = P−1(exp(−e−2βry)q) − 2e−2βry/α

and εn (respectively, ε̃n) is the left hand side of Lemma 7(i) (respectively, (ii).) Since J is
continuous on [0, 1] × [0,∞), we get the assertion. �

Lemma 8 and the relations p∗, ζ∗r , q
∗ > 0 imply the following lemma.

Lemma 9. It holds that ψ̂nk > 0, k = 0, . . . , n− 1 for large enough n.

Now we define an (n+ 1)-variable function Ln(x0, . . . , xn−1, λ) by

Ln(x0, . . . , xn−1, λ) = f̃n(x0, . . . , xn−1) + λ(φ− x0 − · · · − xn−1).

Then we have the following.

Lemma 10. When n is large enough, the vector (ψ̂n0 , . . . , ψ̂
n
n−1, λ̂

n) is the unique solution of

∂

∂x0

Ln = · · · =
∂

∂xn−1

Ln =
∂

∂λ
Ln = 0. (7.10)

Proof. Suppose that a vector (x̃0, . . . , x̃n−1, λ̃) is a solution of (7.10). Then we have x̃0 + · · ·+
x̃n−1 = φ and Lemma 5 implies

λ̃ = cnλ̃+ α(1 − cn) exp(−c2kn y)F n
k

(
k∑
l=0

ck−ln x̃l − cknz/α

)
,

thus

k∑
l=0

ck−ln x̃l = F n,−1
k (exp(c2kn y)λ̃/α) + cknz/α, k = 0, . . . , n− 2. (7.11)

Then we see that x̃k = Tk(λ̃), k = 0, . . . , n− 1. Then we have

0 =
∂

∂xn−1

Ln(x̃0, . . . , x̃n, λ̃)

= α exp

(
cn−1
n z − c2(n−1)

n y − α

n−1∑
l=0

cn−1−l
n x̃l

)
− λ̃ = Hn(λ̃).

Since λ̂n is the unique solution of Hn(λ) = 0, we have λ̃ = λ̂n. This equality also imples
x̃k = Tk(λ̂n) = ψ̂nk , k = 0, . . . , n − 1. Thus the solution of (7.10) is unique. The above
arguments also tell us that (ψ̂n0 , . . . , ψ̂

n
n−1, λ̂

n) satisfies (7.10). �

Now we have the following proposition.
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Proposition 3. It holds that fn(n) = f̃n(ψ̂n0 , . . . , ψ̂
n
n−1)/α for enough large n.

Proof. By Lemma 4, we can find M > 0 large enough so that f̃n(x) < 0 holds for x ∈
Ξn(φ) with |x| ≥ M . Then f̃n has at least one local maximum point on (−M,M)n (x̃ =
(x̃0, . . . , x̃n−1), say.) By the Lagrange multiplier method, we see that there is some λ̃ ∈ R such
that (7.10) holds at (x̃, λ̃). Then Lemma 10 implies x̃k = ψ̂nk for k = 0, . . . , n− 1. This means
that (ψ̂1, . . . , ψ̂n−1) is the unique local maximum, which is inevitably the global maximum of
f̃n on Ξn(φ). �

Now we prove Theorem 6. We divide f̃n(ψ̂n0 , . . . , ψ̂
n
n−1) into the following three parts:

f̃n(ψ̂n0 , . . . , ψ̂
n
n−1) = ez−y(1 − e−αψ̂

n
0 )

+
n−2∑
k=1

exp

(
cknz − c2kn y − α

k−1∑
l=0

ck−ln ψ̂nl

)
(1 − e−αψ̂

n
k )

+ exp

(
cn−1
n z − c2(n−1)

n y − α
n−2∑
k=0

cn−1−k
n ψ̂nk

)
(1 − e−αψ̂

n
n−1)

= Ãn + B̃n + C̃n.

By Lemma 8, we easily get

Ãn −→ ez−y(1 − e−αp
∗
), n→ ∞. (7.12)

Using the relation (7.11) and Lemmas 7–8, we have

C̃n = exp
(
(cn−1
n − cn−2

n )z − c2(n−1)
n y − αF n,−1

n−2 (exp(c2(n−1)
n y)λ̂n/α)

)
×(1 − e−αψ̂

n
n−1)

−→ exp
(
e−2βy − αP−1(exp(e−2βy)λ∗/α)

)
(1 − e−αq

∗
)

= ez−ye−αη
∗
1 (1 − e−αq

∗
). (7.13)

To calculate the limit of B̃n we set

B̂n =
α

n

n−2∑
k=1

exp
(
c2kn y − αξ∗k/n

)
ζ∗k/n.

Then we have

|B̃n − B̂n| ≤ ez

{
n−2∑
k=1

∣∣∣e−αψ̂n
k − e−αζ

∗
k/n

/n
∣∣∣+ n−2∑

k=1

∣∣∣∣1 − e−αζ
∗
k/n

/n −
αζ∗k/n
n

∣∣∣∣
}

+
α

n

n−2∑
k=1

∣∣∣exp(−c2kn y − αF n,−1
k (exp(c2kn y)λ̂

n/α) − exp(c2kn y − αξ∗k/n)
∣∣∣ ζ∗k/n

−→ 0, n→ ∞ (7.14)
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by virtue of (7.11) and Lemmas 7–8. Moreover we have

lim
n→∞

B̂n = α

∫ 1

0

exp(e−2βry − αξ∗r )ζ
∗
rdr = αez−y

∫ 1

0

e−αη
∗
r

(
βξ∗r +

d

dr
η∗r

)
dr

= αβez−y
∫ 1

0

e−αη
∗
r ξ∗rdr + ez−y(e−αp

∗ − e−αη
∗
1 ). (7.15)

By (7.12)–(7.15), we see that w + eF+y(Ãn + B̃n + C̃n) converges to the right hand side of
(4.5). Then we obtain the assertion by Proposition 1.
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