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Université de Versailles Saint-Quentin
45 avenue des Etats Unis, 78035 Versailles Cedex France

5 Department of Mathematical Sciences, The University of Tokyo
Komaba Meguro Tokyo 153-8914 Japan

e-mail:myama@ms.u-tokyo.ac.jp

Abstract. We consider an inverse problem of determining a spatially varying factor
in a source term in a nonstationary linearized Navier-Stokes equations by observa-

tion data in an arbitrarily fixed sub-domain over some time interval. We prove the
Lipschitz stability provided that the t-dependent factor satisfies a non-degeneracy
condition. Our proof based on a new Carleman estimate for the Navier-Stokes equa-
tions.

§1. Introduction and the main result.

In a bounded domain Ω ⊂ R3 with smooth boundary, we consider the linearized

Navier-Stokes equations for an incompressible viscous fluid flow:

∂tv − ν∆v + (A · ∇)v + (v · ∇)B +∇p = F (x, t) in Q ≡ Ω× (0, T ), (1.1)

div v = 0 in Q (1.2)

Typeset by AMS-TEX
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and

v = 0 on Σ ≡ Ω× (0, T ). (1.3)

Here v = (v1, v2, v3)
T , ·T denotes the transpose of matrices, ν > 0 is a constant

describing the viscosity, and for simplicity we assume that the density is one. Let

∂t =
∂
∂t , ∂j =

∂
∂xj

, j = 1, 2, 3, ∆ =
∑3

j=1 ∂
2
j , ∇ = (∂1, ∂2, ∂3)

T ,

(w · ∇)v =

 3∑
j=1

wj∂jv1,
3∑

j=1

wj∂jv2,
3∑

j=1

wj∂jv3

T

for v = (v1, v2, v3)
T and w = (w1, w2, w3)

T . Henceforth let n be the outward unit

normal vector to ∂Ω and let ∂u
∂n = ∇u ·n. Moreover let γ = (γ1, γ2, γ3) ∈ (N∪{0})3,

∂γ
x = ∂γ1

1 ∂γ2

2 ∂γ3

3 and |γ| = γ1 + γ2 + γ3. Throughout this paper, we assume

A ∈ W 2,∞(0, T ;W 2,∞(Ω)), B ∈ W 2,∞(0, T ;W 2,∞(Ω)). (1.4)

Physically v denotes the velocity field of the incompressible fluid and by R(x, t)f(x)

we will model the density of external force causing the movement of the fluid. In

this paper, we consider:

R(x, t) = (r1(x, t), r2(x, t), r3(x, t))
T ,

f = f(x), rj = rj(x, t), j = 1, 2, 3 : real-valued. (1.5)

In the forward problem we are required to discuss the unique existence of solutions in

suitable spaces to (1.1) - (1.3) with initial condition for a given external source term

Rf and there are a vast amount of works (e.g., Ladyzhenskaya [36], Temam [41] and

the references therein). The forward problem is important, but any practical studies

of the forward problem can be started only after suitable modeling of physical

parameters such as the viscosity ν, the force term Rf . The inverse source problems

are concerned with such modeling. In our inverse problem, we mainly discuss the

determination of a spatially varying function f(x) for given R(x, t).
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Inverse Source Problem. Let ω ⊂ Ω be an arbitrarily given non-empty sub-

domain, 0 < θ < T , and the velocity field v satisfy (1.1) - (1.3). Then determine

f(x) by observation data (v|ω×(0,T ), v(·, θ)|ω).

Despite of many practical applications, the inverse problems of this type for

the Navier-Stokes equations have been not studied intensively. As the relevant

results, we refer to Choulli, Imanuvilov and Yamamoto [8], Fan, Di Cristo, Jiang

and Nakamura [9], Fan, Jiang and Nakamura [10], Imanuvilov and Yamamoto [21].

Our main achievement is the Lipschitz stability with an arbitrary sub-domain

ω. On the other hand, in the existing paper [8] - [10] and [21], one has to assume

that ∂ω ⊃ ∂Ω, that is, ω is a neighbourhood of ∂Ω. Such a geometric constraint is

unnatural for the equation of parabolic type. In fact, in the corresponding inverse

parabolic problem (e.g., Imanuvilov and Yamamoto [20], Yamamoto [43]), we need

not any geometric constraints for ω.

We note that in our paper as well as [8], [9], [10], we do not assume any data

of the pressure field p. If we assume the data p(x, θ), x ∈ Ω, then we can argue

similarly to [20] for a more general inverse problem of determining a vector-valued

function f(x) in Rf with suitable 3×3 matrix R(x, t), while in this paper, we study

only the case where unknown f is real-valued.

As for different types of inverse problems for the Navier-Stokes equations, see

Prilepko, Orlovsky and Vasin [40] and the references therein. In [40], the authors

discuss inverse problems by final overdetermining observation data u(x, T ), x ∈ Ω.

We introduce the following spaces:

H2,1(Q) = {w; ∂tw, ∂γ
xw ∈ (L2(Q))3, |γ| ≤ 2},

H = {v = (v1, v2, v3) ∈ (C∞
0 (Ω))3; div v = 0}

(L2(Ω))3

,

V = H ∩ (H1
0 (Ω))

3.
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Here and henceforth A × B denotes the exterior product of vectors A,B ∈ R3:

A×B = (A2B3 −A3B2, A3B1 −A1B3, A1B2 −A2B1)
T , and [a]k denotes the k-th

component of a vector a.

By Fursikov and Imanuvilov [13], Imanuvilov [15], we see that there exists a

function η ∈ C2(Ω) satisfying (i) or (ii):

(i) Case Int(ω ∩ ∂Ω) = ∅:

η|∂Ω = 0, η > 0 in Ω, |∇η(x)| > 0 on Ω \ ω. (1.6)

(ii) Case where ∂ω ∩ ∂Ω contains a non-empty relatively open sub-set Γ of ∂Ω:

|∇η(x)| > 0 on Ω, η > 0 in Ω,

∂η

∂n
< 0 and η = 0 on ∂Ω \ Γ1 with some open set Γ1 ⊂⊂ Γ. (1.7)

We are ready to state our main result.

Theorem 1. Let ω be an arbitrary non-empty sub-domain of Ω. Let 0 < θ < T ,

and let R(x, t) = (r1(x, t), r2(x, t), r3(x, t))
T satisfy

R(·, θ) ∈ C2(Ω), ∂j
tR ∈ L∞(Q), j = 0, 1, 2 (1.8)

and let f ∈ H1
0 (Ω).

(i) Let Int(ω ∩ ∂Ω) = ∅. We assume (1.6) and

R(x, θ)×∇η(x) ̸= 0, x ∈ Ω \ ω. (1.9)

Then there exists a constant C = C(Ω, T, θ, R) > 0 such that for all v satisfying

(1.1) - (1.3) and ∂j
t v ∈ L2(0, T ;V ) ∩H2,1(Q) with j = 0, 1, 2,

∥f∥L2(Ω) ≤ C(∥v∥H2(0,T ;H1(ω)) + ∥rot v(·, θ)∥H2(Ω) + ∥v(·, θ)∥H1(Ω)) (1.10)
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provided that f |ω = 0.

(ii) Let ∂ω∩∂Ω contain a non-empty relatively open sub-set Γ of ∂Ω. We assume

(1.7) and

R(x, θ)×∇η(x) ̸= 0, x ∈ Ω. (1.11)

Then estimate (1.10) holds true.

Example. Let Ω = {x ∈ R3; ρ1 < |x| < ρ2} with 0 < ρ1 < ρ2 and ω = {x ∈

R3; ρ2 − δ1 < |x| < ρ2 − ρ2} where δ1, δ2 > 0 are sufficiently small and δ1 > δ2.

Then we can directly verify that the function

η(x) = (ρ2m2 − |x|2m)(|x|2m − ρ2m1 )

with any positive δ1 and δ2, satisfies (1.6) if m ∈ N is sufficiently large.

In fact, we have

∇η(x) = 2mx|x|2m−2(ρ2m1 + ρ2m2 − 2|x|2m)

and
(

ρ2m
1 +ρ2m

2

2

) 1
2m

> |x| ≥ ρ1 implies |∇η(x)| > 0. Since limm→∞

(
ρ2m
1 +ρ2m

2

2

) 1
2m

=

ρ2 by ρ2 > ρ1, we see that for small δ1, δ2 > 0, we can choose large m ∈ N such

that |∇η(x)| > 0 if x ∈ Ω \ ω.

If x×R(x, θ) ̸= 0, x ∈ Ω, then (1.9) hold true.

For determination of f , we have to assume the non-degeneracy condition on

R given by (1.9) or (1.11). By Cases (i) and (ii), we see that if we can assume

f |ω = 0, then we can prove the Lipschitz stability without any geometric constraints

concerning ω. Since in Case (i) it may happen that ∇η(x̃) = 0 for some point

x̃ ∈ ω, we can not prove the stability in the inverse problem for general ω and f not

vanishing in ω. In case (ii) where ω is an open set near ∂Ω, then, without assumption

f |ω ≡ 0, we can prove the same Lipschitz stability result under condition (1.11).
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In Theorem 1, we note that θ > 0. If θ = 0, then our inverse problem is exactly

an inverse problem to the forward problem, that is, the initial/ boundary value

problem. However the corresponding inverse problem for a parabolic equation is

open in the case of θ = 0 (cf. Isakov [28], [29]), and also our inverse problem with

θ = 0 is an open problem.

Our main approach is based on Bukhgeim and Klibanov [7] which introduced a

methodology based on Carleman estimates to inverse problems (also see Isakov [27],

Klibanov [33], [34]). The key Carleman estimate is Theorem 2 in section 2, which

is derived by Imanuvilov, Puel and Yamamoto [19]. Our proof is by Imanuvilov

and Yamamoto [20] which modified the method in [7].

As for similar inverse problems, we refer to the following works: Amirov and

Yamamoto [1], Baudouin and Puel [2], Bellassoued [3], [4], Bellassoued and Ya-

mamoto [5], Bukhgeim [6], Imanuvilov, Isakov and Yamamoto [17], Imanuvilov and

Yamamoto [22] - [26], Isakov [27] - [29], Isakov and Yamamoto [30], Khăıdarov [31],

[32], Klibanov and Timonov [35], Li [37], Li and Yamamoto [38], Yamamoto [42],

[43]. This list is far from the complete and the readers can consult the references

therein.

Our proof is based on a Carleman estimate for the Navier-Stokes equations. It is

different from one obtained for example in Fernández-Cara, Guerrero, Imanuvilov

and Puel [11], [12]. As for Carleman estimates, see further Fursikov and Imanuvilov

[13], Hörmander [14], Imanuvilov [16].

The rest part of this paper is composed of two sections. In section 2, we prove a

Carleman estimate for the Navier-Stokes equations which may be an independent

interest. In section 3, we complete the proof of our main result.
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§2. Key Carleman estimate.

Let ℓ ∈ C∞[0, T ] satisfy

ℓ(t) > 0, 0 < t < T,

ℓ(t) =

{
t, 0 ≤ t ≤ T

4 ,

T − t, 3
4T ≤ t ≤ T,

ℓ(θ) > ℓ(t), ∀t ∈ (0, T ) \ {θ}.

(2.1)

We set Qω = ω × (0, T ),

φ(x, t) =
eλη(x)

ℓ8(t)
, α(x, t) =

eλη(x) − e
2λ∥η∥

C0(Ω)

ℓ8(t)
. (2.2)

We further set H
1
2 ,

1
4 (Σ) = H

1
4 (0, T ;L2(∂Ω)) ∩ L2(0, T ;H

1
2 (∂Ω)). Hence C,Cj de-

note generic positive constants which are dependent on Ω, T,R, θ, λ but independent

of s. Our Carleman estimate can be stated:

Theorem 2. Let η ∈ C2(Ω) satisfy (1.6) or (1.7). Let F ∈ L2(0, T ;H), v(·, 0) ∈ V

and let v ∈ L2(0, T ;V )∩H2,1(Q) satisfy (1.1) - (1.3). Then there exists a constant

λ̂ such that for any λ > λ̂ there exist constants C > 0 and ŝ > 0 independent of s

such that

∥(∇v)esα∥L2(Q) + ∥s 1
2φ

1
2 (rot v)esα∥L2(Q) + ∥sφvesα∥L2(Q) ≤ C(∥Fesα∥L2(Q)

+∥s 1
2φ

1
2 (rot v)esα∥L2(Qω) + ∥sφvesα∥L2(Qω) + ∥s 1

2φ
1
2 (∇v)esα∥L2(Qω))

for all s ≥ ŝ.

In order to prove Theorem 2, we show the following lemmata.

Lemma 1 ([18]). Let η ∈ C2(Ω) satisfy (1.6) or (1.7). Let y ∈ H1(Ω) satisfy

∆y = f +
3∑

j=1

∂jfj in Ω, y = g on ∂Ω
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with f, fj ∈ L2(Ω) and g ∈ H
1
2 (∂Ω), supp g ⊂ ∂Ω \ Γ1. Then there exist a constant

C > 0, independent of s and λ, and parameters λ̂ and ŝ such that for any λ > λ̂

and s > ŝ,

∫
Ω

(
1

s
|∇y|2 + sλ2e2λη|y|2

)
e2se

λη

dx ≤ C

(
s−

1
2 e2s∥g∥2

H
1
2 (∂Ω)

+

∫
Ω

1

s2λ2
e−λη|f |2e2se

λη

dx

+
3∑

j=1

∫
Ω

eλη|fj |2e2se
λη

dx+

∫
ω

(
1

s
|∇y|2 + sλ2e2λη|y|2

)
e2se

λη

dx

)
. (2.3)

Lemma 2 ([19]). Let η ∈ C2(Ω) satisfy (1.6) or (1.7). Let y ∈ L2(0, T ;H1(Ω))∩

H1(0, T ;H−1(Ω)) satisfy

∂ty −∆y +
3∑

j=1

bj(x, t)∂jy +
3∑

j=1

∂j(cj(x, t)y) + d(x, t)y

=f +
3∑

j=1

∂jfj in Q,

y = g on Σ

with bj , cj , d ∈ L∞(Q), f, fj ∈ L2(Q) and g ∈ H
1
2 ,

1
4 (Σ). Then there exists a

constant λ̂ such that for any λ > λ̂ there exist constants C > 0 and ŝ = ŝ(λ),

independent of s, such that

∫
Q

(
1

sφ
|∇y|2 + sφ|y|2

)
e2sαdxdt

≤C

(
s−

1
2

∥∥∥φ− 1
4 gesα

∥∥∥2
H

1
2
, 1
4 (Σ)

+ s−
1
2

∥∥∥φ− 1
8 gesα

∥∥∥2
L2(Σ)

+

∫
Q

1

s2φ2
|f |2e2sαdxdt

+
3∑

j=1

∫
Q

|fj |2e2sαdxdt+
∫
Qω

sφ|y|2e2sαdxdt

)
(2.4)

for all s ≥ ŝ.

Here and henceforth we set

∥g∥
H

1
2
, 1
4 (Σ)

= ∥g∥
L2(0,T ;H

1
2 (∂Ω))

+ ∥g∥
H

1
4 (0,T ;L2(∂Ω))

.



INVERSE SOURCE PROBLEM FOR THE NAVIER- STOKES EQUATIONS 9

Remark. The estimates (2.3) and (2.4) are proved in [18] and [19] under as-

sumption (1.6). However the proof is performed locally, using a partition of unity

{ej}Nj=1. Let us choose a partition of unity such that if supp ej ∩ Γ1 ̸= ∅, then

dist(supp ej , ∂ω \ ∂Ω) > 0. In the case of supp ej ∩ Γ1 ̸= ∅, for the function ejy,

we use the standard energy estimate for the parabolic or elliptic equations. In the

case of supp ej ∩ Γ1 = ∅, we directly apply the Carleman estimates established in

[18] and [19].

Proof. Set z = rot v. Then, noting that rot rot v = −∆v by div v = 0, we have

Lz ≡ ∂tz − ν∆z + (A · ∇)z

=rotF −
3∑

j=1

∇Aj × ∂jv −
3∑

j=1

∇vj × ∂jB − (v · ∇)rotB,

∆v = −rot z in Q.

Let χ be a smooth function such that χ|Ω\ω = 1 and suppχ ∩ Γ1 = ∅. Then

L(χz) = [χ,L]z + χ

rotF −
3∑

j=1

∇Aj × ∂jv −
3∑

j=1

∇vj × ∂jB − (v · ∇)rotB

 .

(2.5)

To equation (2.5), we apply the Carleman estimate stated in Lemma 2.

Indeed, by (1.4), we have (∂kAj)(∂jvm) = ∂j((∂kAj)vm)− (∂j∂kAj)vm etc., we

rewrite the right-hand side of the first equation in (2.5) by the form f +
∑3

j=1 ∂jfj .

Applying (2.4), for all sufficiently large s we have

s

∫
Q

φ|z|2e2sαdxdt = s

∫
Ω\ω

∫ T

0

φ|χz|2e2sαdxdt+ s

∫
ω

∫ T

0

φ|χz|2e2sαdxdt

≤C

(
s−

1
2 ||φ− 1

4 zesα||2
H

1
2
, 1
4 (Σ1)

+ s−
1
2 ||φ− 1

8 zesα||2L2(Σ1)

+

∫
Q

|v|2e2sαdxdt+
∫
Q

|F |2e2sαdxdt+
∫
Qω

sφ|z|2e2sαdxdt

)

≤ C

(
s−

1
2

∥∥∥∥φ− 1
4
∂v

∂n
esα
∥∥∥∥2
H

1
2
, 1
4 (Σ1)

+ s−
1
2

∥∥∥∥φ− 1
8
∂v

∂n
esα
∥∥∥∥2
L2(Σ1)

+

∫
Q

|v|2e2sαdxdt+
∫
Q

|F |2e2sαdxdt+
∫
Qω

sφ|∇v|2e2sαdxdt

)
(2.6)
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where Σ1 = [0, T ]× (suppχ ∩ ∂Ω).

Here we used that v|∂Ω = 0, and z|Σ is given by only ∂v
∂n |Σ.

To equations ∆(χv) = −χrot z+ [χ,∆]v in Q and χv|∂Ω = 0, we apply estimate

(2.3). Therefore, fixing λ > 0 sufficiently large, for all s ≥ ŝ and all t from the

interval (0, T ) we have

s

∫
Ω

e2λη(x)|v(x, t)|2e2se
λη(x)

dx

≤C

(∫
Ω

eλη(x)|z(x, t)|2e2se
λη(x)

dx+

∫
ω

(|∇v(x, t)|2 + se2λη(x)|v(x, t)|2)e2se
λη(x)

dx

)
.

Dividing both sides of the above inequality by ℓ8(t) and using e2λη(x) ≥ eλη(x) in

Ω, we have that for all s ≥ ŝ and t from interval (0, T )

s

∫
Ω

φ(x, t)|v(x, t)|2e2se
λη(x)

dx ≤ C

(∫
Ω

φ(x, t)|z(x, t)|2e2se
λη(x)

dx

+

∫
ω

(
1

ℓ8(t)
|∇v(x, t)|2 + sℓ8(t)φ2(x, t)|v(x, t)|2

)
e2se

λη(x)

dx

)
. (2.7)

Let s ≥ s1 ≡ ŝmax0≤t≤T ℓ8(t). Then s
ℓ8(t) ≥ ŝ for 0 ≤ t ≤ T . Hence substituting

s
ℓ8(t) instead of s in (2.7), we obtain

s

ℓ8(t)

∫
Ω

φ(x, t)|v(x, t)|2e2s
eλη(x)

ℓ8(t) dx ≤ C

(∫
Ω

φ(x, t)|z(x, t)|2e2s
eλη(x)

ℓ8(t) dx

+

∫
ω

(
1

ℓ8(t)
|∇v(x, t)|2 + sφ2(x, t)|v(x, t)|2

)
e
2s eλη(x)

ℓ8(t) dx

)
, 0 ≤ t ≤ T.

Multiply e
−2s

2∥η∥
C0(Ω)

ℓ8(t) , and we have

s

ℓ8(t)

∫
Ω

φ(x, t)|v(x, t)|2e2sα(x,t)dx ≤ C

(∫
Ω

φ(x, t)|z(x, t)|2e2sα(x,t)dx

+

∫
ω

(
1

ℓ8(t)
|∇v(x, t)|2 + sφ2(x, t)|v(x, t)|2

)
e2sα(x,t)dx

)
, 0 ≤ t ≤ T

for all sufficiently large positive s. Integrating over t ∈ [0, T ], we have

s

∫
Q

φ2|v|2e2sαdxdt ≤ sC1

∫
Q

1

ℓ8(t)
φ|v|2e2sαdxdt

≤C2

(∫
Q

φ(x, t)|z(x, t)|2e2sαdxdt+
∫
Qω

(φ|∇v|2 + sφ2|v|2)e2sαdxdt
)

(2.8)
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for all sufficiently large positive s. Therefore, combining (2.6) and (2.8) and ab-

sorbing the terms with lower powers of s into the left-hand side, we have

∫
Q

(sφ|rot v|2 + s2φ2|v|2)e2sαdxdt

≤C3

(
s−

1
2

∥∥∥∥φ− 1
4
∂v

∂n
esα̂
∥∥∥∥2
H

1
2
, 1
4 (Σ1)

+ s−
1
2

∥∥∥∥φ− 1
8
∂v

∂n
esα̂
∥∥∥∥2
L2(Σ1)

+

∫
Q

|F |2e2sαdxdt

+

∫
Qω

(sφ|rot v|2 + s2φ2|v|2 + sφ|∇v|2)e2sαdxdt

)
(2.9)

for all large s > 0. Here and henceforth, noting that η = 0 on ∂Ω\Γ1 in both cases

(1.6) and (1.7), we have

α(x, t) = α̂(t) ≡ 1− e
2λ∥η∥

C0(Ω)

ℓ8(t)
, x ∈ ∂Ω \ Γ1.

We need to estimate the first and the second terms on the right-hand side of

(2.9). We set

W (t, x) = ℓ(t)v(t, x)esα̂(t), r(t, x) = ℓ(t)p(t, x)esα̂(t).

Then we have

∂tW − ν∆W + (A · ∇)W + (W · ∇)B +∇r = ℓesα̂F + ℓ′vesα̂ + ℓsα̂′esα̂v,

divW = 0 in Q, W = 0 on Σ,

W (·, 0) = 0 in Ω.
(2.10)

On the other hand,

Lemma 3. Let F ∈ L2(0, T ;H) and Z0 ∈ V . Then for the boundary value problem

∂tZ − ν∆Z + (A · ∇)Z + (Z · ∇)B +∇r = F in Q,

divZ = 0 in Q,

∫
Ω

r(t, x)dx = 0, ∀t ∈ (0, T ),

Z = 0 on Σ,

Z(·, 0) = Z0,
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there exists a unique solution Z ∈ H1,2(Q) such that

∥Z∥H2,1(Q) + ∥r∥L2(0,T ;H1(Ω)) ≤ C4(∥Z0∥H1(Ω) + ∥F∥L2(Q)).

We can prove the lemma similarly to Proposition 1.2 (pp.267-268) in Temam

[41] where A = B = 0 is assumed.

We note that

ℓsα̂′esα̂v = −8ℓ′α̂sesα̂v = 8ℓ′(e
2λ∥η∥

C0(Ω) − 1)sφvesα̂ on Σ

and

|ℓsα̂′esα̂v| ≤ C5s|φvesα̂| on Σ. (2.11)

Applying Lemma 3 in (2.10), in view of (2.11) and α(t, x) ≥ α̂(t) for (x, t) ∈ Q by

η|Ω > 0, we obtain

∥W∥H2,1(Q) + ∥r∥L2(0,T ;H1(Ω))

≤C6(∥esα̂F∥L2(Q) + ∥sφvesα̂∥L2(Q)) ≤ C6(∥esαF∥L2(Q) + ∥sφvesα∥L2(Q)).

By Theorem 2.1 (p.9) in Lions and Magenes [39], we have

∥∥∥∥∂W∂n
∥∥∥∥
H

1
2
, 1
4 (Σ)

≤ C7∥W∥H2,1(Q)

and so ∥∥∥∥∂W∂n
∥∥∥∥
H

1
2
, 1
4 (Σ)

≤ C8(∥Fesα∥L2(Q) + ∥sφvesα∥L2(Q)). (2.12)

Estimate (2.12) yields

∥∥∥∥φ− 1
4
∂v

∂n
esα̂
∥∥∥∥
H

1
2
, 1
4 (Σ1)

=

∥∥∥∥ℓ2 ∂v∂nesα̂
∥∥∥∥
H

1
2
, 1
4 (Σ1)

≤C9

∥∥∥∥ℓ∂W∂n
∥∥∥∥
H

1
2
, 1
4 (Σ1)

≤ C10

∥∥∥∥∂W∂n
∥∥∥∥
H

1
2
, 1
4 (Σ1)

≤C11(∥Fesα∥L2(Q) + ∥sφvesα∥L2(Q)). (2.13)
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Moreover

∥∥∥∥φ− 1
8
∂v

∂n
esα̂
∥∥∥∥
L2(Σ1)

=

∥∥∥∥ℓ ∂v∂nesα̂
∥∥∥∥
L2(Σ1)

=

∥∥∥∥∂W∂n
∥∥∥∥
L2(Σ1)

≤C12(∥Fesα∥L2(Q) + ∥sφvesα∥L2(Q)). (2.14)

Choosing s > 0 large, in view of (2.13) and (2.14), we can absorb the first and the

second terms on the right-hand side of (2.9) into the left-hand side.

Finally we have to estimate ∥(∇v)esα∥L2(Q). Since −∆ = rot rot − ∇div and

div v = 0, we have

−∆(vesα) = rot rot (vesα)− v · ∇esα.

Taking the scalar product of this equation with function vesα in L2(Ω), and applying

|∇α| ≤ C13φ in Q and

∫
Ω

(rotU) · V dx =

∫
Ω

U · (rotV )dx, U, V ∈ H1
0 (Ω)

3,

we obtain the estimate

∥(∇v)esα)∥2L2(Q) ≤ C13(∥(rot v)esα∥2L2(Q) + ∥sφvesα∥2L2(Q)).

Thus the proof of Theorem 2 is completed. �

We conclude this section with Carleman estimates for a first-order equation. The

proof is done by integration by parts (see e.g. Lemma 3.2 in [26]).

Lemma 4. Let β ∈ C2(Ω) and

(Lf)(x) =
3∑

j=1

aj(x)∂jf(x), x ∈ Ω,

where aj ∈ C1(Ω), 1 ≤ j ≤ 3, and let us set

µ(x) =
3∑

j=1

aj(x)∂jβ(x), x ∈ Ω.
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Then there exists a number λ̂ > 0 such that for any λ > λ̂, we can choose s3 =

s3(λ) > 0 satisfying: there exists a constant C = C(Ω, λ) > 0 such that

s2
∫
Ω

(
µ2(x)− C

s

)
|f |2e2sβ(x)dx ≤ C

∫
Ω

|Lf |2e2sβ(x)dx

for all s ≥ s3 and all f ∈ H1
0 (Ω).

§3. Proof of Theorem 1.

Let us set w1 = ∂tv and w2 = ∂2
tw. Then

∂tv − ν∆v + (A · ∇)v + (v · ∇)B +∇p = Rf

and

∂tw1 − ν∆w1 + (A · ∇)w1 + (∂tA · ∇)v + (w1 · ∇)B + (v · ∇)∂tB

+∇∂tp = (∂tR)f

and

∂tw2 − ν∆w2 + (A · ∇)w2 + 2(∂tA · ∇)w1 + (∂2
tA · ∇)v

+(w2 · ∇)B + 2(w1 · ∇)∂tB + (v · ∇)∂2
tB +∇∂2

t p = (∂2
tR)f

and

div v = divw1 = divw2 = 0 in Q

and

v = w1 = w2 = 0 on Σ.

Here and henceforth we set

D = ∥v∥H2(0,T ;H1(ω)) + ∥rot v(·, θ)∥H2(Ω) + ∥v(·, θ)∥H1(Ω). (3.1)
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Therefore applications of Theorem 2 to v, w1, w2 yield∫
Q

(|∇v|2 + sφ|rot v|2 + s2φ2|v|2)e2sαdxdt

≤C1

(∫
Q

|Rf |2e2sαdxdt+ eCsD2

)
(3.2)

and ∫
Q

(|∇w1|2 + sφ|rotw1|2 + s2φ2|w1|2)e2sαdxdt

≤C1

(∫
Q

|(∂tR)f |2e2sαdxdt+ eCsD2

+

∫
Q

(|(∂tA · ∇)v|2 + |(v · ∇)∂tB|2)e2sαdxdt

)
(3.3)

and∫
Q

(|∇w2|2 + sφ|rotw2|2 + s2φ2|w2|2)e2sαdxdt ≤ C1

(∫
Q

|(∂2
tR)f |2e2sαdxdt+ eCsD2

+

∫
Q

(|(∂tA · ∇)w1|2 + |(∂2
tA · ∇)v|2 + |(w1 · ∇)∂tB|2 + |(v · ∇)∂2

tB|2)e2sαdxdt

)
.
(3.4)

Hence, by (1.4) and (1.8), we apply estimate (3.2) in (3.3) and estimate (3.3) in

(3.4) successively, in order to obtain∫
Q

2∑
j=0

(|∂j
t∇v|2 + sφ|∂j

t rot v|2 + s2φ2|∂j
t v|2)e2sαdxdt

≤C2

(∫
Q

|f |2e2sαdxdt+ eCsD2

)
(3.5)

for all large s > 0. We set β(x) = α(x, θ). Noting that e2sα(x,0) = 0 for x ∈ Ω, we

have

C−1
3

∫
Ω

|∂trot v(x, θ)|2e2sβ(x)dx ≤
∫
Ω

φ(x, θ)−1|∂trot v(x, θ)|2e2sβ(x)dx

=

∫
Ω

∂

∂t

(∫ θ

0

φ(x, t)−1|∂trot v|2e2sαdt

)
dx

=

∫
Ω

∫ θ

0

{2φ−1(∂trot v · ∂2
t rot v) + 2sφ−1(∂tα)|∂trot v|2 + ∂t(φ

−1)|∂trot v|2}e2sαdxdt

≤C4

∫
Q

(|∂trot v|2 + |∂2
t rot v|2 + sφ|∂trot v|2)e2sαdxdt.
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Here we used

|∂tα(x, t)| =
∣∣∣∣8ℓ′(t)ℓ9(t)

(eλη(x) − e
2λ∥η∥

C0(Ω))

∣∣∣∣ ≤ C4φ
2(x, t), (x, t) ∈ Q.

Hence for all large s > 0 inequality (3.5) implies

∫
Ω

|∂trot v(x, θ)|2e2sβ(x)dx ≤ C5

(∫
Q

|f |2e2sαdxdt+ eCsD2

)
. (3.6)

On the other hand, applying the operator rot to (1.1) and noting

rot (A · ∇)B =
3∑

j=1

∇Aj × ∂jB + (A · ∇)rotB

for A = (A1, A2, A3)
T and B = (B1, B2, B3)

T , we have

rot (R(x, θ)f(x)) = ∂trot v(x, θ)− ν∆rot v(x, θ)

+
3∑

j=1

∇Aj(x, θ)× ∂jv(x, θ) + (A · ∇)rot v(x, θ)

+
3∑

j=1

∇vj(x, θ)× ∂jB(x, θ) + (v · ∇)rotB(x, θ), x ∈ Ω.

Therefore

|rot (R(x, θ)f(x))|esβ ≤ |∂trot v(x, θ)|esβ + C6e
sβE(x), x ∈ Ω,

where we set

E =
∑
|γ|≤2

∥∂γ
xrot v(·, θ)∥L2(Ω) + ∥∇v(·, θ)∥L2(Ω) + ∥v(·, θ)∥L2(Ω).

Hence for all sufficiently large positive s, inequality (3.6) implies

∫
Ω

|rot (R(x, θ)f(x))|2e2sβdx ≤ C7

(∫
Ω

|∂t(rot v)(x, θ)|2e2sβdx+ eCs

∫
Ω

E2(x)dx

)
≤C8

(∫
Q

|f |2e2sαdxdt+ eCs(D2 + E2)

)
. (3.7)
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On the other hand, setting R(x, θ) = a(x) ≡ (a1(x), a2(x), a3(x))
T , we have

rot (R(x, θ)f(x)) = ∇f(x)× a(x) + f(x)rot a(x)

=((a3∂2f − a2∂3f), (a1∂3f − a3∂1f), (a2∂1f − a1∂2f))
T + f(x)rot a(x)

≡(L1f, L2f, L3f)
T + ([rot a]1f, [rot a]2f, [rot a]3f)

T . (3.8)

We recall that [a]k denotes the k-th component of a vector a. Note that

∂jβ =
λ

ℓ8(θ)
eλη∂jη, j = 1, 2, 3.

Denote that

µ1(x) =

 0
a3
−a2

 ·

 ∂1β
∂2β
∂3β

 =
λ

ℓ8(θ)
eλη(a3∂2η − a2∂3η),

µ2(x) =

−a3
0
a1

 ·

 ∂1β
∂2β
∂3β

 =
λ

ℓ8(θ)
eλη(a1∂3η − a3∂1η),

µ3(x) =

 a2
−a1
0

 ·

 ∂1β
∂2β
∂3β

 =
λ

ℓ8(θ)
eλη(a2∂1η − a1∂2η),

that is,

(µ1(x), µ2(x), µ3(x))
T =

λeλη

ℓ8(θ)
(∇η × a(x)).

We prove only for case (i) because the proof in case (ii) is very similar. Applying

Lemma 4 to the first-order differential operators L1, L2, L3 in Ω \ ω, in view of

f |ω = 0, we have

s2
∫
Ω\ω

(
µ1(x)

2 + µ2(x)
2 + µ3(x)

2 − 3C9

s

)
|f(x)|2e2sβdx

≤C10

∫
Ω\ω

(|rot (R(x, θ)f(x))|2 + |f(x)rot a(x)|2)e2sβdx.

Therefore (3.7) yields

s2
∫
Ω\ω

(
λ2e2λη|∇η × a|2 − 3C9

s

)
|f(x)|2e2sβdx

≤C10

(∫ T

0

∫
Ω\ω

|f |2e2sαdxdt+
∫
Ω\ω

|f(x)|2e2sβdx+ eCsD2

)
.
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Taking s > 0 sufficiently large, in view of (1.9), we can absorb the second term on

the right-hand side into the left-hand side. Hence

s2
∫
Ω\ω

|f(x)|2e2sβdx ≤ C11

(∫ T

0

∫
Ω\ω

|f |2e2sαdxdt+ eCsD2

)
. (3.9)

Since α(x, θ) = β(x) ≥ α(x, t) for (x, t) ∈ Q by the third condition in (2.1),

inequality (3.9) yields

s2
∫
Ω\ω

|f(x)|2e2sβdx ≤ C11

(∫
Ω\ω

|f |2e2sβdx+ eCsD2

)
,

and choosing s > 0 large, we can absorb the first term on the right-hand side into

the left-hand side. Thus the proof in Case (i) is completed. �
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32. A. Khăıdarov, On stability estimates in multidimensional inverse problems for
differential equations, Soviet Math. Dokl. 38 (1989), 614–617.

33. M.V. Klibanov, Inverse problems in the 〕arge and Carleman bounds, Differ-
ential Equations 20 (1984), 755–760.

34. M.V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems 8
(1992), 575–596.

35. M.V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse
Problems and Numerical Applications, VSP, Utrecht, 2004.

36. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,
Gordon and Breach, New York, 1969.

37. S. Li, An inverse problem for Maxwell’s equations in bi-isotropic media, SIAM
J. Math. Anal. 37 (2005), 1027–1043.

38. S. Li and M. Yamamoto, Carleman estimate for Maxwell’s equations in anisotropic
media and the observability inequality, J. Phys.: Conf. Ser. 12 (2005), 110–115.

39. J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and
Applications, vol.II, Springer-Verlag, Berlin, 1972.

40. A.I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Prob-
lems in Mathematical Physics, Marcel Dekker, New York, 2000.

41. R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.
42. M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse

problems, J. Math. Pures Appl. 78 (1999), 65–98.
43. M. Yamamoto, Carleman estimates for parabolic equations and applications,

Inverse Problems 25 (2009), 123013 (75pp).



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2010–18 Takahito Kashiwabara: On a finite element approximation of the Stokes prob-
lem under leak or slip boundary conditions of friction type.

2010–19 Yusaku Tiba: Holomorphic curves into the product space of the Riemann
spheres.

2010–20 Nariya Kawazumi and Yusuke Kuno: The Chas-Sullivan conjecture for a sur-
face of infinite genus.

2011–1 Qing Liu: Fattening and comparison principle for level-set equation of mean
curvature type.

2011–2 Oleg Yu. Imanuvilov, Gunther Uhlmann, and Masahiro Yamamoto: Global
uniqueness in determining the potential for the two dimensional Schrödinger
equation from cauchy data measured on disjoint subsets of the boundary.

2011–3 Junjiro Noguchi: Connections and the second main theorem for holomorphic
curves.

2011–4 Toshio Oshima and Nobukazu Shimeno: Boundary value problems on Rie-
mannian symmetric spaces of the noncompact type.

2011–5 Toshio Oshima: Fractional calculus of Weyl algebra and Fuchsian differential
equations.

2011–6 Junjiro Noguchi and Jörg Winkelmann: Order of meromorphic maps and ra-
tionality of the image space.

2011–7 Mourad Choulli, Oleg Yu. Imanuvilov, Jean-Pierre Puel and Masahiro Ya-
mamoto: Inverse source problem for the lineraized Navier-Stokes equations with
interior data in arbitrary sub-domain.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


