[English]

Tea: 16:00 -- 16:30 コモンルーム

世話係

河野 俊丈

河澄 響矢

逆井 卓也

10月7日 -- 056号室, 16:30 -- 18:00

入江 慶 (京都大学数理解析研究所)

Abstract: ストリング・トポロジーの出発点は，多様体の自由ループ空間のホモロジーの上に Batalin-Vilkovisky(BV)代数の構造を発見したChas-Sullivanの仕事である． この結果を精密化して鎖レベルの構造を定義することは重要な問題であるが， まだ決定版の解答は得られていない．困難の一つは， 交叉積を鎖レベルで定義する際に現れる，横断正則性の問題である． 講演では，de Rham 鎖というものを用いることでこの困難を回避し， 鎖レベルの構造が部分的に実現できるということを説明したい．

10月21日 -- 056号室, 16:30 -- 18:00

秋田 利之 (北海道大学)

Abstract: Given a prime number

11月4日 -- 056号室, 16:30 -- 18:00

Brian Bowditch (University of Warwick)

Abstract: We describe some results regarding the coarse geometry of the Teichmüller space of a compact surface. In particular, we describe when the Teichmüller space admits quasi-isometric embeddings of euclidean spaces and half-spaces. We also give some partial results regarding the quasi-isometric rigidity of Teichmüller space. These results are based on the fact that Teichmüller space admits a ternary operation, natural up to bounded distance which endows it with the structure of a coarse median space.

11月11日 -- 056号室, 16:30 -- 18:00

Kenneth Baker (University of Miami)

Abstract: This past summer Dunfield-Hoffman-Licata produced examples of asymmetric, hyperbolic, 1-cusped 3-manifolds with pairs of lens space Dehn fillings through a search of the extended SnapPea census. Examinations of these examples with Hoffman and Licata lead us to coincidences with other work in progress that gives a simple holistic topological approach towards producing and extending many of these families. In this talk we'll explicitly describe our construction and discuss related applications of the technique.

11月18日 -- 056号室, 16:30 -- 18:00

Charles Siegel (Kavli IPMU)

Abstract: Modular operads were introduced by Getzler and Kapranov to formalize the structure of gluing maps between moduli of stable marked curves. We present a construction of analogous gluing maps between moduli of pluri-log-canonically embedded marked curves, which fit together to give a modular operad of embedded curves. This is joint work with Satoshi Kondo and Jesse Wolfson.

11月25日 -- 056号室, 16:30 -- 18:00

齋藤 昌彦 (University of South Florida)

Abstract: A quandles is an algebraic structure closely related to knots. Homology theories of quandles have been defined, and their cocycles are used to construct invariants for classical knots, spatial graphs and knotted surfaces. In this talk, an overview is given for quandle cocycle invariants and their applications to geometric properties of knots. The current status of computations, recent developments and open problems will also be discussed.

12月2日 -- 056号室, 16:30 -- 18:00

窪田 陽介 (東京大学大学院数理科学研究科)

Abstract: C*環の位相的な性質を扱う"非可換"トポロジーの理論を用 いて，Atiyah-Segal completion theoremに新しい視点を導入する．ここで，R. MeyerとR. Nestらによって発展したKasparov categoryの三角圏としてのホモロ ジー代数が中心的な役割を果たす．また，これは系として同変Kホモロジーや捩 れK理論に対するAtiyah-Segal型のcompletion theoremを含む．これは荒野悠輝 氏との共同研究である．

12月9日 -- 056号室, 16:30 -- 18:00

藤原 耕二 (京都大学大学院理学研究科)

Abstract: Let MCG(S) be the mapping class group of a closed orientable surface S. We give a precise condition (in terms of the Nielsen-Thurston decomposition) when an element in MCG(S) has positive stable commutator length.

Stable commutator length tends to be positive if there is "negative curvature". The proofs use our earlier construction in the paper "Constructing group actions on quasi-trees and applications to mapping class groups" of group actions on quasi-trees. This is a joint work with Bestvina and Bromberg.

12月16日 -- 056号室, 17:10 -- 18:10

岩瀬 則夫 (九州大学)

Abstract: The idea of a space with smooth structure is first introduced by K. T. Chen in his study of a loop space to employ the idea of iterated path integrals. Following the pattern established by Chen, J. M. Souriau introduced his version of a space with smooth structure which is now called diffeology and become one of the most exciting topics in Algebraic Topology. Following Souriau, P. I.-Zenmour presented de Rham theory associated to a diffeology of a space. However, if one tries to show a version of de Rham theorem for a general diffeological space, he must encounter a difficulty to show the existence of a partition of unity and thus the exactness of the Mayer-Vietoris sequence. To resolve such difficulties, we introduce a new definition of differential forms.

1月13日 -- 056号室, 16:30 -- 18:00

吉田 建一 (東京大学大学院数理科学研究科)

Abstract: We will introduce the stable presentation length of a finitely presented group, which is defined by stabilizing the presentation length for the finite index subgroups. The stable presentation length of the fundamental group of a 3-manifold is an analogue of the simplicial volume and the stable complexity introduced by Francaviglia, Frigerio and Martelli. We will explain some similarities of stable presentation length with simplicial volume and stable complexity.

1月20日 -- 056号室, 16:30 -- 17:30

吉安 徹 (東京大学大学院数理科学研究科)

Abstract: In 2013, Y. Eliashberg and E. Murphy established the

3月10日 -- 056号室, 16:30 -- 18:00

Andrei Pajitnov (Université de Nantes)

Abstract: Let H be a generic time-dependent 1-periodic Hamiltonian on a closed weakly monotone symplectic manifold M. We construct a refined version of the Floer chain complex associated to (M,H), and use it to obtain new lower bounds for the number P(H) of the 1-periodic orbits of the corresponding hamiltonian vector field. We prove in particular that if the fundamental group of M is finite and solvable or simple, then P(H) is not less than the minimal number of generators of the fundamental group.

This is joint work with Kaoru Ono.

3月24日 -- 056号室, 17:00 -- 18:30

Mina Aganagic (University of California, Berkeley)

Abstract: I will describe two conjectures relating knot theory and mirror symmetry. One can associate, to every knot K, one a Calabi-Yau manifold Y(K), which depends on the homotopy type of the knot only. The first conjecture is that Y(K) arises by a generalization of SYZ mirror symmetry, as mirror to the conifold, O(-1)+O(-1)->P^1. The second conjecture is that topological string provides a quantization of Y(K) which leads to quantum HOMFLY invariants of the knot. The conjectures are based on joint work with C. Vafa and also with T.Ekholm, L. Ng.

4月7日 -- 056号室, 17:00 -- 18:30

植田 一石 (大阪大学)

Abstract: Potential functions are Floer-theoretic invariants obtained by counting Maslov index 2 disks with Lagrangian boundary conditions. In the talk, we will discuss our joint work with Yanki Lekili and Yuichi Nohara on Lagrangian torus fibrations on the Grassmannian of 2-planes in an n-space, the potential functions of their Lagrangian torus fibers, and their relation with mirror symmetry for Grassmannians.

過去のプログラム